Stefano Pampanin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3695388/publications.pdf

Version: 2024-02-01

126907 144013 3,937 120 33 57 citations g-index h-index papers 121 121 121 1782 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quasiâ€static and pseudoâ€dynamic testing of unbonded postâ€tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering and Structural Dynamics, 2009, 38, 331-354.	4.4	245
2	Seismic performance of reinforced concrete buildings in the 22 February Christchurch (Lyttelton) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44, 239-278.	0.5	206
3	PERFORMANCE-BASED SEISMIC RESPONSE OF FRAME STRUCTURES INCLUDING RESIDUAL DEFORMATIONS. PART I: SINGLE-DEGREE OF FREEDOM SYSTEMS. Journal of Earthquake Engineering, 2003, 7, 97-118.	2.5	176
4	Multi-Storey Prestressed Timber Buildings in New Zealand. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2008, 18, 166-173.	0.8	111
5	PERFORMANCE-BASED SEISMIC RESPONSE OF FRAME STRUCTURES INCLUDING RESIDUAL DEFORMATIONS. PART II: MULTI-DEGREE OF FREEDOM SYSTEMS. Journal of Earthquake Engineering, 2003, 7, 119-147.	2.5	110
6	Dynamic testing of precast, post-tensioned rocking wall systems with alternative dissipating solutions. Bulletin of the New Zealand Society for Earthquake Engineering, 2008, 41, 90-103.	0.5	104
7	Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engineering and Structural Dynamics, 2007, 36, 1763-1783.	4.4	99
8	Performance-Based Seismic Retrofit Strategy for Existing Reinforced Concrete Frame Systems Using Fiber-Reinforced Polymer Composites. Journal of Composites for Construction, 2007, 11, 211-226.	3.2	95
9	The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake. Structural Concrete, 2011, 12, 223-233.	3.1	95
10	CONCEPT AND DEVELOPMENT OF HYBRID SOLUTIONS FOR SEISMIC RESISTANT BRIDGE SYSTEMS. Journal of Earthquake Engineering, 2005, 9, 899-921.	2.5	90
11	RELEVANCE OF BEAM-COLUMN JOINT DAMAGE AND COLLAPSE IN RC FRAME ASSESSMENT. Journal of Earthquake Engineering, 2002, 6, 75-100.	2.5	88
12	Fuse-Type External Replaceable Dissipaters: Experimental Program and Numerical Modeling. Journal of Structural Engineering, 2016, 142, .	3.4	88
13	Selfâ€centering structural systems with combination of hysteretic and viscous energy dissipations. Earthquake Engineering and Structural Dynamics, 2010, 39, 1083-1108.	4.4	83
14	Development and validation of a metallic haunch seismic retrofit solution for existing under-designed RC frame buildings. Earthquake Engineering and Structural Dynamics, 2006, 35, 1739-1766.	4.4	76
15	Biaxial testing of unbonded postâ€tensioned rocking bridge piers with external replacable dissipaters. Earthquake Engineering and Structural Dynamics, 2011, 40, 1723-1741.	4.4	70
16	Development of Probabilistic Framework for Performance-Based Seismic Assessment of Structures Considering Residual Deformations. Journal of Earthquake Engineering, 2010, 14, 1092-1111.	2.5	69
17	Emerging Solutions for High Seismic Performance of Precast/Prestressed Concrete Buildings. Journal of Advanced Concrete Technology, 2005, 3, 207-223.	1.8	66
18	Repair Costs of Existing RC Buildings Damaged by the L'Aquila Earthquake and Comparison with FEMA P-58 Predictions. Earthquake Spectra, 2018, 34, 237-263.	3.1	66

#	Article	IF	Citations
19	Effects of Variation of Axial Load and Bidirectional Loading on Seismic Performance of GFRP Retrofitted Reinforced Concrete Exterior Beam-Column Joints. Journal of Composites for Construction, 2010, 14, 94-104.	3.2	64
20	Assessment and Design Procedure for the Seismic Retrofit of Reinforced Concrete Beam-Column Joints using FRP Composite Materials. Journal of Composites for Construction, 2012, 16, 21-34.	3.2	64
21	The sliding hinge joint moment connection. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 202-212.	0.5	61
22	Quasi-Static Cyclic Testing of Two-Thirds Scale Unbonded Posttensioned Rocking Dissipative Timber Walls. Journal of Structural Engineering, 2016, 142, .	3.4	59
23	Experimental Evaluation of the In-Plane Stiffness of Timber Diaphragms. Earthquake Spectra, 2012, 28, 1687-1709.	3.1	56
24	Post-Tensioned Glulam Beam-Column Joints with Advanced Damping Systems: Testing and Numerical Analysis. Journal of Earthquake Engineering, 2014, 18, 147-167.	2.5	56
25	Probabilistic evaluation of soil–foundation–structure interaction effects on seismic structural response. Earthquake Engineering and Structural Dynamics, 2011, 40, 135-154.	4.4	51
26	Numerical Modeling of Rectangular Reinforced Concrete Structural Walls. Journal of Structural Engineering, 2017, 143, .	3.4	51
27	Seismic Performance of Full-Scale Post-Tensioned Timber Beam-Column Connections. Journal of Earthquake Engineering, 2016, 20, 383-405.	2.5	50
28	Seismic Performance of Vertical Nonstructural Components in the 22 February 2011 Christchurch Earthquake. Earthquake Spectra, 2014, 30, 401-425.	3.1	46
29	Low damage seismic solutions for non-structural drywall partitions. Bulletin of Earthquake Engineering, 2015, 13, 1029-1050.	4.1	44
30	Development and Testing of an Alternative Dissipative Posttensioned Rocking Timber Wall with Boundary Columns. Journal of Structural Engineering, 2016, 142, .	3.4	42
31	Seismic performance of reinforced concrete buildings in the September 2010 Darfield (Canterbury) earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2010, 43, 340-350.	0.5	41
32	Title is missing!. Journal of Earthquake Engineering, 2003, 7, 119.	2.5	38
33	Seismic testing of post-tensioned Pres-Lam core walls using cross laminated timber. Engineering Structures, 2018, 167, 639-654.	5.3	38
34	Pres-Lam Buildings: State-of-the-Art. Journal of Structural Engineering, 2020, 146, .	3.4	36
35	Seismic performance of non-structural components and contents in buildings: an overview of NZ research. Earthquake Engineering and Engineering Vibration, 2016, 15, 1-17.	2.3	35
36	Shaking table testing of post-tensioned timber frame building with passive energy dissipation systems. Bulletin of Earthquake Engineering, 2017, 15, 4475-4498.	4.1	35

3

#	Article	IF	Citations
37	Reality-check and renewed challenges in earthquake engineering. Bulletin of the New Zealand Society for Earthquake Engineering, 2012, 45, 137-160.	0.5	35
38	Non-linear analysis of RC masonry-infilled frames using the SLaMA method: part 1—mechanical interpretation of the infill/frame interaction and formulation of the procedure. Bulletin of Earthquake Engineering, 2019, 17, 3283-3304.	4.1	34
39	Damage Evaluations of Precast Concrete Structures in the 2010–2011 Canterbury Earthquake Sequence. Earthquake Spectra, 2014, 30, 277-306.	3.1	33
40	Postyield Bond Deterioration and Damage Assessment of RC Beams Using Distributed Fiber-Optic Strain Sensing System. Journal of Structural Engineering, 2019, 145, .	3.4	33
41	Performance of road bridges during the 14 November 2016 KaikÅura Earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 253-270.	0.5	33
42	Refinement and Validation of the Simple Lateral Mechanism Analysis (SLaMA) Procedure for RC Frames. Journal of Earthquake Engineering, 2021, 25, 1227-1255.	2.5	31
43	Facade damage assessment of multi-storey buildings in the 2011 Christchurch earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44, 368-376.	0.5	30
44	Enhanced Seismic Performance of Hybrid Bridge Systems: Comparison with Traditional Monolithic Solutions. Journal of Earthquake Engineering, 2008, 12, 1267-1295.	2.5	29
45	Rocking Cantilever Clay Brick Infill Wall Panels: A Novel Low Damage Infill Wall System. Journal of Earthquake Engineering, 2017, 21, 1023-1049.	2.5	28
46	Evolution of outâ€ofâ€plane deformation and subsequent instability in rectangular RC walls under inâ€plane cyclic loading: Experimental observation. Earthquake Engineering and Structural Dynamics, 2018, 47, 2944-2964.	4.4	28
47	Title is missing!. Journal of Earthquake Engineering, 2001, 5, 329.	2.5	25
48	Validation of a Numerical Model for Prediction of Out-of-Plane Instability in Ductile Structural Walls under Concentric In-Plane Cyclic Loading. Journal of Structural Engineering, 2018, 144, .	3.4	25
49	Determination of the seismic performance factors for postâ€tensioned rocking timber wall systems. Earthquake Engineering and Structural Dynamics, 2017, 46, 181-200.	4.4	24
50	Experimental Testing of a Low-Damage Post-Tensioned C-Shaped CLT Core-Wall. Journal of Structural Engineering, 2021, 147, .	3.4	24
51	The Role of Inelastic Torsion in the Determination of Residual Deformations. Journal of Earthquake Engineering, 2007, 11, 133-157.	2.5	23
52	Seismic resilience of plywood-coupled LVL wall panels. Engineering Structures, 2018, 167, 750-759.	5.3	23
53	Displacement based design of post-tensioned timber framed buildings with dissipative rocking mechanism. Soil Dynamics and Earthquake Engineering, 2019, 116, 317-330.	3.8	23
54	Implementation and Validation of the Simple Lateral Mechanism Analysis (SLaMA) for the Seismic Performance Assessment of a Damaged Case Study Building. Journal of Earthquake Engineering, 2020, 24, 1771-1802.	2.5	23

#	Article	IF	CITATIONS
55	Geotechnical and Structural Aspects of the 2010–2011 Christchurch (New Zealand) Earthquakes. Springer Environmental Science and Engineering, 2013, , 1-35.	0.1	22
56	Façade damage assessment of concrete buildings in the 2011 Christchurch earthquake. Structural Concrete, 2012, 13, 3-13.	3.1	21
57	A parametric investigation on applicability of the curved shell finite element model to nonlinear response prediction of planar RC walls. Bulletin of Earthquake Engineering, 2019, 17, 6515-6546.	4.1	21
58	Non-linear analysis of RC masonry-infilled frames using the SLaMA method: part 2â€"parametric analysis and validation of the procedure. Bulletin of Earthquake Engineering, 2019, 17, 3305-3326.	4.1	21
59	Analytical seismic assessment of RC dual wall/frame systems using SLaMA: Proposal and validation. Engineering Structures, 2019, 188, 493-505.	5.3	20
60	Controversial aspects in seismic assessment and retrofit of structures in modern times. Bulletin of the New Zealand Society for Earthquake Engineering, 2006, 39, 120-133.	0.5	20
61	Tests on slender ductile structural walls designed according to New Zealand Standard. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 504-516.	0.5	20
62	Experimental Test and Validation of a Direction- and Displacement-Dependent Viscous Damper. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	19
63	Strength Hierarchy at Reinforced Concrete Beam-Column Joints and Global Capacity. Journal of Earthquake Engineering, 2018, 22, 454-487.	2.5	19
64	Blind prediction of in-plane and out-of-plane responses for a thin singly reinforced concrete flanged wall specimen. Bulletin of Earthquake Engineering, 2018, 16, 427-458.	4.1	19
65	NMIT Arts & Description of a three storey post-tensioned timber building. Case Studies in Structural Engineering, 2016, 6, 76-83.	1.6	18
66	Shakeâ€ŧable tests of innovative drift sensitive nonstructural elements in a lowâ€damage structural system. Earthquake Engineering and Structural Dynamics, 2021, 50, 2398-2420.	4.4	18
67	Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 2009, 42, 204-221.	0.5	18
68	Long-Term Behavior of LVL Posttensioned Timber Beams. Journal of Structural Engineering, 2017, 143, .	3.4	15
69	Seismic Behavior of a Self-Centering System with 2–4 Viscous Damper. Journal of Earthquake Engineering, 2020, 24, 470-484.	2.5	15
70	Towards the "Ultimate Earthquake-Proof―Building: Development of an Integrated Low-Damage System. Geotechnical, Geological and Earthquake Engineering, 2015, , 321-358.	0.2	15
71	Focusing on reducing the earthquake damage to facade systems. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44, 108-120.	0.5	15
72	In-Plane Experimental Testing of Timber-Concrete Composite Floor Diaphragms. Journal of Structural Engineering, 2010, 136, 1461-1468.	3.4	14

#	Article	IF	CITATIONS
73	Seismic design of yielding structures on flexible foundations. Earthquake Engineering and Structural Dynamics, 2015, 44, 1805-1821.	4.4	13
74	Damping reduction factors and codeâ€based design equation for structures using semiâ€active viscous dampers. Earthquake Engineering and Structural Dynamics, 2016, 45, 2533-2550.	4.4	12
75	Diaphragm Connections in Structures with Rocking Timber Walls. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2017, 27, 165-174.	0.8	12
76	Seismic demands on nonstructural components anchored to concrete accounting for structureâ€fastenerâ€nonstructural interaction (SFNI). Earthquake Engineering and Structural Dynamics, 2020, 49, 589-606.	4.4	12
77	A parametric study on out-of-plane instability of doubly reinforced structural walls. Part I: FEM predictions. Bulletin of Earthquake Engineering, 2020, 18, 3747-3780.	4.1	12
78	Comparison of traditional vs low-damage structural and non-structural building systems through a cost/performance-based evaluation. Earthquake Spectra, 2021, 37, 366-385.	3.1	12
79	Experimental testing and analytical modelling of single and double post-tensioned CLT shear walls. Engineering Structures, 2022, 256, 114065.	5.3	12
80	Post-event damage assessment of concrete using the fluorescent microscopy technique. Cement and Concrete Research, 2017, 102, 203-211.	11.0	11
81	Material Property Uncertainties versus Joint Structural Detailing: Relative Effect on the Seismic Fragility of Reinforced Concrete Frames. Journal of Structural Engineering, 2021, 147, .	3.4	11
82	Alternative Performance-Based Retrofit Strategies and Solutions for Existing RC Buildings. Geotechnical, Geological and Earthquake Engineering, 2009, , 267-295.	0.2	10
83	Out-of-Plane Response of In-Plane-Loaded Ductile Structural Walls: State-of-the-Art and Classification of the Observed Mechanisms. Journal of Earthquake Engineering, 2022, 26, 1325-1346.	2.5	10
84	A computational framework for selecting the optimal combination of seismic retrofit and insurance coverage. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 956-975.	9.8	10
85	Seismic performance of alternative risk-reduction retrofit strategies to support decision making. Bulletin of Earthquake Engineering, 2018, 16, 3001-3030.	4.1	9
86	Lateral performance of a Pres-Lam frame designed for gravity loads. Engineering Structures, 2016, 122, 33-41.	5.3	8
87	Development of steel angles as energy dissipation devices for rocking connections. Structural Concrete, 2018, 19, 1657-1671.	3.1	8
88	Long-term strain-ageing effects on low-carbon steel reinforcement. Construction and Building Materials, 2019, 228, 116606.	7.2	8
89	Seismic Design Framework Based on Loss-performance Matrix. Journal of Earthquake Engineering, 2022, 26, 4325-4345.	2.5	8
90	Smart semi-active MR damper to control the structural response. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 235-244.	0.5	8

#	Article	IF	Citations
91	The implications of post-tensioning losses on the seismic response of Pres-Lam frames. Bulletin of the New Zealand Society for Earthquake Engineering, 2018, 51, 57-69.	0.5	8
92	Monotonic and low-cycle fatigue properties of earthquake-damaged New Zealand steel reinforcing bars. The experience after the Christchurch 2010/2011 earthquakes. Procedia Structural Integrity, 2018, 11, 194-201.	0.8	7
93	Experimental study on the effects of biâ€directional loading pattern on rectangular reinforced concrete walls. Earthquake Engineering and Structural Dynamics, 2021, 50, 2010-2030.	4.4	7
94	Damage states and cyclic behaviour of drywalls infilled within RC frames. Bulletin of the New Zealand Society for Earthquake Engineering, 2012, 45, 84-94.	0.5	7
95	Design of base-isolated buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 118-135.	0.5	7
96	RESEARCH PROGRAMME ON SEISMIC PERFORMANCE OF REINFORCED CONCRETE WALLS: KEY RECOMMENDATIONS. Bulletin of the New Zealand Society for Earthquake Engineering, 2020, 53, 54-69.	0.5	7
97	Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards. Earthquake and Structures, 2014, 7, 667-689.	1.0	6
98	Fragility-based methodology for evaluating the time-dependent seismic performance of post-tensioned timber frames. Earthquake Spectra, 2020, 36, 322-352.	3.1	6
99	A parametric study on out-of-plane instability of doubly reinforced structural walls. Part II: Experimental investigation. Bulletin of Earthquake Engineering, 2020, 18, 5193-5220.	4.1	6
100	Preliminary observations from biaxial testing of a two-storey, two-by-one bay, reinforced concrete slotted beam superassembly. Bulletin of the New Zealand Society for Earthquake Engineering, 2012, 45, 97-104.	0.5	6
101	Overview of Connection Detailing for Post-tensioned Dissipative Timber Frames. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2020, 30, 209-216.	0.8	5
102	Performance-Based Issues from the 22 February 2011 Christchurch Earthquake. Geotechnical, Geological and Earthquake Engineering, 2014, , 159-175.	0.2	5
103	Shake table tests of concrete anchors for non-structural components including innovative and alternative anchorage detailing. Bulletin of Earthquake Engineering, 2022, 20, 3971-3993.	4.1	5
104	An integrated performanceâ€based design framework for buildingâ€foundation systems. Earthquake Engineering and Structural Dynamics, 2021, 50, 718-735.	4.4	4
105	Design recommendations to prevent global out-of-plane instability of rectangular reinforced concrete ductile walls. Bulletin of the New Zealand Society for Earthquake Engineering, 2021, 54, 211-227.	0.5	3
106	Behaviour of post-tensioned timber columns under bi-directional seismic loading. Bulletin of the New Zealand Society for Earthquake Engineering, 2014, 47, 41-53.	0.5	3
107	Damage-Control Self-Centering Structures: From Laboratory Testing to On-site Applications. Geotechnical, Geological and Earthquake Engineering, 2010, , 297-308.	0.2	3
108	Strain-ageing effects on the residual low-cycle fatigue life of low-carbon steel reinforcement. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	3

#	Article	IF	CITATIONS
109	Residual Capacity and Permeability-Based Damage Assessment of Concrete in Damaged RC Columns. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	2
110	Displacement-based design of soil–foundation–structure systems. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2019, 172, 16-29.	1.6	2
111	Seismic response of a non-ductile RC frame building subjected to shake-table excitations. Bulletin of Earthquake Engineering, 2022, 20, 517-545.	4.1	2
112	Numerical issues on brittle shear failure of pier-wall continuous vertical joints in URM dutch buildings. Engineering Structures, 2022, 258, 114078.	5.3	2
113	Outâ€ofâ€plane shearâ€axial failure in slender rectangular reinforced concrete walls. Earthquake Engineering and Structural Dynamics, 2022, 51, 2426-2448.	4.4	2
114	Performance-Based Seismic Retrofit of Existing Reinforced Concrete Frame Buildings using Fibre-Reinforced Polymers: Challenges and Solutions. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2011, 21, 260-270.	0.8	1
115	Shake Table Testing of a Low Damage Steel Building with 2-4 Displacement Dependent (D3) Viscous Damper. Key Engineering Materials, 2018, 763, 331-338.	0.4	1
116	Influence of earthquake damage and repair interventions on expected annual losses of reinforced concrete wall buildings. Earthquake Spectra, 2022, 38, 2026-2060.	3.1	1
117	Experimental calibration of parallel-to-grain strain penetration length for internal epoxied bars. Construction and Building Materials, 2016, 112, 970-979.	7.2	0
118	New Zealand contributions to the Global Earthquake Model's Earthquake Consequences Database (GEMECD). Bulletin of the New Zealand Society for Earthquake Engineering, 2015, 48, 245-263.	0.5	0
119	Long-Term Performance of PresLam Frames: Are Post-Tensioning Losses really an Issue?., 2017, , .		0
120	Passive direction displacement dependent damping (D3) device. Bulletin of the New Zealand Society for Earthquake Engineering, 2018, 51, 105-112.	0.5	0