Tuomo Nieminen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694918/publications.pdf

Version: 2024-02-01

115 papers 12,196 citations

57758 44 h-index 97 g-index

203 all docs $\begin{array}{c} 203 \\ \\ \text{docs citations} \end{array}$

times ranked

203

5597 citing authors

#	Article	IF	CITATIONS
1	Observations on nocturnal growth of atmospheric clusters. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 365.	1.6	51
2	New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 2022, 22, 1293-1309.	4.9	11
3	Technical note: Incorporating expert domain knowledge into causal structure discovery workflows. Biogeosciences, 2022, 19, 2095-2099.	3.3	1
4	Exploring Non-Linear Dependencies in Atmospheric Data with Mutual Information. Atmosphere, 2022, 13, 1046.	2.3	3
5	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
6	Late-spring and summertime tropospheric ozone and NO ₂ in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 2021, 21, 4677-4697.	4.9	11
7	ennemi: Non-linear correlation detection with mutual information. SoftwareX, 2021, 14, 100686.	2.6	18
8	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	4.9	9
9	Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in northern Italy. Environmental Science Atmospheres, 2021, 1, 214-227.	2.4	12
10	A modelling study of OH, NO ₃ and H ₂ SO ₄ in 2007–2018 at SMEAR II, Finland: analysis of long-term trends. Environmental Science Atmospheres, 2021, 1, 449-472.	2.4	1
11	Significance of the organic aerosol driven climate feedback in the boreal area. Nature Communications, 2021, 12, 5637.	12.8	38
12	Size-dependent influence of NO $\langle sub \rangle x \langle sub \rangle$ on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	10.3	61
13	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
14	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	12.0	49
15	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	4.9	42
16	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
17	Roll vortices induce new particle formation bursts in the planetary boundary layer. Atmospheric Chemistry and Physics, 2020, 20, 11841-11854.	4.9	9
18	Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation. Atmospheric Chemistry and Physics, 2019, 19, 12531-12543.	4.9	14

#	Article	IF	CITATIONS
19	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	4.9	21
20	Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters. Atmospheric Chemistry and Physics, 2018, 18, 1835-1861.	4.9	25
21	Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0. Geoscientific Model Development, 2018, 11, 4987-5001.	3.6	3
22	Identification of new particle formation events with deep learning. Atmospheric Chemistry and Physics, 2018, 18, 9597-9615.	4.9	17
23	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	10.3	164
24	Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chemistry and Physics, 2018, 18, 14737-14756.	4.9	113
25	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	4.9	26
26	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	7.1	118
27	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	3.3	29
28	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	4.9	50
29	Estimation of atmospheric particle formation rates through an analytical formula: validation and application in HyytiAអ៊ីធារាd Puijo, Finland. Atmospheric Chemistry and Physics, 2017, 17, 13361-13371.	4.9	1
30	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiAAPAtmospheric Chemistry and Physics, 2017, 17, 6227-6241.	4.9	84
31	A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3†nm ions at ambient concentrations. Atmospheric Measurement Techniques, 2016, 9, 2709-2720.	3.1	14
32	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
33	Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.	3.3	16
34	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
35	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
36	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107

#	Article	IF	CITATIONS
37	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
38	How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?. Atmospheric Chemistry and Physics, 2016, 16, 14297-14315.	4.9	14
39	Regional effect on urban atmospheric nucleation. Atmospheric Chemistry and Physics, 2016, 16, 8715-8728.	4.9	60
40	Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa. Atmospheric Chemistry and Physics, 2015, 15, 4983-4996.	4.9	15
41	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
42	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	4.9	18
43	Technical note: New particle formation event forecasts during PEGASOS–Zeppelin Northern mission 2013 in HyytiÂÍĀÞFinland. Atmospheric Chemistry and Physics, 2015, 15, 12385-12396.	4.9	27
44	Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II. Atmospheric Chemistry and Physics, 2015, 15, 13413-13432.	4.9	18
45	Variability of air ion concentrations in urban Paris. Atmospheric Chemistry and Physics, 2015, 15, 13717-13737.	4.9	19
46	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	4.9	11
47	Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmospheric Environment, 2015, 119, 156-166.	4.1	29
48	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
49	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	27.8	1,448
50	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	4.9	17
51	Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest. Atmospheric Chemistry and Physics, 2014, 14, 7883-7893.	4.9	48
52	Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station. Atmospheric Chemistry and Physics, 2014, 14, 2169-2183.	4.9	72
53	Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmospheric Chemistry and Physics, 2014, 14, 4733-4748.	4.9	54
54	Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 2014, 14, 4383-4396.	4.9	36

#	Article	IF	CITATIONS
55	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
56	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	12.6	876
57	Gas-phase alkylamines in a boreal Scots pine forest air. Atmospheric Environment, 2013, 80, 369-377.	4.1	51
58	Analysis of particle size distribution changes between three measurement sites in Northern Scandinavia. , 2013 , , .		0
59	Contribution of oxidized organic compounds to nanoparticle growth. , 2013, , .		0
60	Atmospheric electricity and aerosol-cloud interactions in earth's atmosphere. , 2013, , .		0
61	On atmospheric neutral and ion clusters observed in Hyytial al spring 2011., 2013,,.		0
62	Determination of the size distribution of recombination products from atmospheric measurements. , 2013, , .		0
63	Measurements of cluster ions using a nano radial DMA and a particle size magnifier in CLOUD. , 2013, , .		0
64	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013 , , .		1
65	How do amines affect the growth of recently formed aerosol particles. , 2013, , .		0
66	Nucleation of H[sub 2]SO[sub 4] and oxidized organics in CLOUD experiment. , 2013, , .		0
67	Evolution of alpha-pinene oxidation products in the presence of varying oxidizers: CI-APi-TOF point of view. , 2013, , .		0
68	Modeling new particle formation with detailed chemistry and aerosol dynamics in a boreal forest environment. , 2013, , .		0
69	Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: The impact of Kola air pollution to new particle formation. , 2013 , , .		0
70	New particle formation events observed at a high altitude site Pico Espejo, Venezuela. , 2013, , .		0
71	Estimating the concentration of nucleation mode aerosol particles over South Africa using satellite remote sensing measurements., 2013,,.		0
72	Does the onset of new particle formation occur in the planetary boundary layer?., 2013,,.		1

#	Article	IF	CITATIONS
73	Observations of biomass burning smoke from Russian wild fire episodes in Finland 2010. , 2013, , .		O
74	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
75	Oxidation of SO ₂ by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics, 2013, 13, 3865-3879.	4.9	131
76	Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments. Atmospheric Chemistry and Physics, 2013, 13, 7665-7682.	4.9	25
77	Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements. Atmospheric Chemistry and Physics, 2013, 13, 11391-11401.	4.9	25
78	Analysis of particle size distribution changes between three measurement sites in northern Scandinavia. Atmospheric Chemistry and Physics, 2013, 13, 11887-11903.	4.9	22
79	Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica. Atmospheric Chemistry and Physics, 2013, 13, 7473-7487.	4.9	46
80	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
81	Terpenoid emissions from fully grown east Siberian <i>Larix cajanderi</i> trees. Biogeosciences, 2013, 10, 4705-4719.	3.3	11
82	Climate Feedbacks Linking the Increasing Atmospheric CO2 Concentration, BVOC Emissions, Aerosols and Clouds in Forest Ecosystems. Tree Physiology, 2013, , 489-508.	2.5	38
83	Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification. Aerosol and Air Quality Research, 2013, 13, 421-435.	2.1	33
84	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃÅÞFinland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	4.9	45
85	On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmospheric Chemistry and Physics, 2012, 12, 11733-11751.	4.9	55
86	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	4.9	45
87	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	12.0	435
88	The role of relative humidity in continental new particle formation. Journal of Geophysical Research, 2011, 116, .	3.3	127
89	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
90	Growth rates of nucleation mode particles in HyytiĀĀduring 2003â°'2009: variation with particle size, season, data analysis method and ambient conditions. Atmospheric Chemistry and Physics, 2011, 11, 12865-12886.	4.9	173

#	Article	IF	CITATIONS
91	The first estimates of global nucleation mode aerosol concentrations based on satellite measurements. Atmospheric Chemistry and Physics, 2011, 11, 10791-10801.	4.9	31
92	Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11, 12663-12671.	4.9	75
93	Parameterization of ion-induced nucleation rates based on ambient observations. Atmospheric Chemistry and Physics, 2011, 11, 3393-3402.	4.9	18
94	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	4.9	392
95	Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations. Atmospheric Chemistry and Physics, 2011, 11, 7701-7713.	4.9	21
96	Modelling atmospheric OH-reactivity in a boreal forest ecosystem. Atmospheric Chemistry and Physics, 2011, 11, 9709-9719.	4.9	69
97	Seasonal cycle, size dependencies, and source analyses of aerosol optical properties at the SMEAR II measurement station in HyytiÃÞĀÞFinland. Atmospheric Chemistry and Physics, 2011, 11, 4445-4468.	4.9	72
98	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	4.9	228
99	Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere. Physical Review Letters, 2011, 106, 228302.	7.8	72
100	Intercomparison of air ion spectrometers: an evaluation of results in varying conditions. Atmospheric Measurement Techniques, 2011, 4, 805-822.	3.1	34
101	On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 11223-11242.	4.9	262
102	EUCAARI ion spectrometer measurements at 12 European sites $\hat{a} \in \hat{a}$ analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	4.9	248
103	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	4.9	144
104	Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 1885-1898.	4.9	89
105	Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10, 3743-3757.	4.9	48
106	Results from the CERN pilot CLOUD experiment. Atmospheric Chemistry and Physics, 2010, 10, 1635-1647.	4.9	96
107	Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed. Atmospheric Chemistry and Physics, 2010, 10, 9773-9779.	4.9	149
108	Atmospheric nucleation and initial steps of particle growth: Numerical comparison of different theories and hypotheses. Atmospheric Research, 2010, 98, 229-236.	4.1	17

#	Article	IF	Citations
109	Connection of Sulfuric Acid to Atmospheric Nucleation in Boreal Forest. Environmental Science & Enviro	10.0	84
110	Charged and total particle formation and growth rates during EUCAARI 2007 campaign in HyytiÄÞĀÞA Atmospheric Chemistry and Physics, 2009, 9, 4077-4089.	4.9	104
111	Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC. Atmospheric Chemistry and Physics, 2009, 9, 4177-4184.	4.9	59
112	Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9, 7435-7448.	4.9	348
113	Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, HyytiÃIĀPFinland. Atmospheric Chemistry and Physics, 2009, 9, 667-676.	4.9	40
114	Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment. Atmospheric Chemistry and Physics, 2008, 8, 4823-4839.	4.9	86
115	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, 0, 10, .	3.3	10