
Weijie Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3694033/publications.pdf Version: 2024-02-01

WEILIE DEN

#	Article	IF	CITATIONS
1	Global mutual information-based feature selection approach using single-objective and multi-objective optimization. Neurocomputing, 2015, 168, 47-54.	3.5	59
2	Nonuniform State Space Reconstruction for Multivariate Chaotic Time Series. IEEE Transactions on Cybernetics, 2019, 49, 1885-1895.	6.2	40
3	Joint mutual information-based input variable selection for multivariate time series modeling. Engineering Applications of Artificial Intelligence, 2015, 37, 250-257.	4.3	37
4	Multivariate Chaotic Time Series Prediction Based on Improved Grey Relational Analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 2144-2154.	5.9	36
5	Robust manifold broad learning system for large-scale noisy chaotic time series prediction: A perturbation perspective. Neural Networks, 2019, 117, 179-190.	3.3	31
6	Application of a Hybrid Model Based on Echo State Network and Improved Particle Swarm Optimization in PM2.5 Concentration Forecasting: A Case Study of Beijing, China. Sustainability, 2019, 11, 3096.	1.6	24
7	Prediction of Air Pollution Concentration Based on mRMR and Echo State Network. Applied Sciences (Switzerland), 2019, 9, 1811.	1.3	22
8	Hierarchical delay-memory echo state network: A model designed for multi-step chaotic time series prediction. Engineering Applications of Artificial Intelligence, 2021, 102, 104229.	4.3	22
9	Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine. Neural Processing Letters, 2019, 50, 1281-1301.	2.0	21
10	A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123245.	1.2	17
11	A hybrid model of stacked autoencoder and modified particle swarm optimization for multivariate chaotic time series forecasting. Applied Soft Computing Journal, 2022, 116, 108321.	4.1	17
12	A Hybrid Model Based on a Two-Layer Decomposition Approach and an Optimized Neural Network for Chaotic Time Series Prediction. Symmetry, 2019, 11, 610.	1.1	15
13	Modified BBO-Based Multivariate Time-Series Prediction System With Feature Subset Selection and Model Parameter Optimization. IEEE Transactions on Cybernetics, 2022, 52, 2163-2173.	6.2	12
14	Efficient feature extraction framework for EEG signals classification. , 2016, , .		11
15	Variational auto-encoders based on the shift correction for imputation of specific missing in multivariate time series. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110055.	2.5	10
16	Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction. Engineering Applications of Artificial Intelligence, 2020, 95, 103797.	4.3	9
17	Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction. ISA Transactions, 2022, 126, 370-376.	3.1	6
18	Learning Both Dynamic-Shared and Dynamic-Specific Patterns for Chaotic Time-Series Prediction. IEEE Transactions on Cybernetics, 2022, 52, 4115-4125.	6.2	5

Weijie Ren

#	Article	IF	CITATIONS
19	Time series prediction based on echo state network tuned by divided adaptive multi-objective differential evolution algorithm. Soft Computing, 2021, 25, 4489-4502.	2.1	5
20	Hierarchical Echo State Network With Sparse Learning: A Method for Multidimensional Chaotic Time Series Prediction. IEEE Transactions on Neural Networks and Learning Systems, 2022, PP, 1-12.	7.2	4
21	Multi-step-ahead Chaotic Time Series Prediction Based on Hierarchical Echo State Network with Augmented Random Features. IEEE Transactions on Cognitive and Developmental Systems, 2022, , 1-1.	2.6	4
22	A Combination Model Based on EEMD-PE and Echo State Network for Chaotic Time Series Prediction. , 2019, , .		3
23	Mutual Information Variational Autoencoders and Its Application to Feature Extraction of Multivariate Time Series. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36, .	0.7	3
24	Adaptive Sparse Quantization Kernel Least Mean Square Algorithm for Online Prediction of Chaotic Time Series. Circuits, Systems, and Signal Processing, 2021, 40, 4346-4369.	1.2	2
25	A two-stage causality method for time series prediction based on feature selection and momentary conditional independence. Physica A: Statistical Mechanics and Its Applications, 2022, 595, 126970.	1.2	2
26	Modeling of multivariate time series using variable selection and Gaussian process. , 2014, , .		1
27	Research on Path Planning of Cloud Robot in Dynamic Environment Based on Improved DDPG Algorithm. , 2021, , .		1
28	Prediction of multivariate time series with sparse Gaussian process echo state network. , 2013, , .		0
29	Multivariate chaotic system modeling based on nonuniform state space reconstruction and echo state network. , 2015, , .		0
30	Particle Swarm optimization based Neural Network Model for Chaotic Time Series Forecasting. , 2020, ,		0