

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3693356/publications.pdf Version: 2024-02-01

ling lin

#	Article	IF	CITATIONS
1	Brittle-ductile transition of elastomer toughened HDPE: effect of elastomer modulus. Journal of Polymer Research, 2022, 29, .	1.2	2
2	Fast‣canning Potentialâ€Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie, 2022, 134, .	1.6	8
3	Microenvironment-responsive DNA-conjugated albumin nanocarriers for targeted therapy. Journal of Materials Chemistry B, 2021, 9, 8424-8436.	2.9	4
4	Self-Assembly of Polymeric Nanovesicles into Hierarchical Supervesicles and Its Application in Selectable Multicompartmental Encapsulation. Macromolecules, 2021, 54, 1905-1911.	2.2	4
5	A high-performance structural material based on maize straws and its biodegradable composites of poly (propylene carbonate). Cellulose, 2021, 28, 11381-11395.	2.4	9
6	A two-stage energy tuning strategy <i>via</i> salt and glycine programmed DNA-engineered crystals. Chemical Communications, 2021, 57, 13578-13581.	2.2	0
7	Preparation of chlorinated poly(propylene carbonate) and its effects on the mechanical properties of poly(propylene carbonate)/starch blends as a compatibilizer. Polymer Bulletin, 2020, 77, 1327-1342.	1.7	5
8	Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain. Journal of the American Chemical Society, 2020, 142, 19012-19016.	6.6	43
9	Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain. Analytical Chemistry, 2020, 92, 10177-10182.	3.2	30
10	Enhancing the stability of single-stranded DNA on gold nanoparticles as molecular machines through salt and acid regulation. Journal of Materials Chemistry B, 2019, 7, 5554-5562.	2.9	8
11	Effect of end-grafted PEG conformation on the hemocompatibility of poly(styrene-b-(ethylene-co-butylene)-b-styrene). Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1670-1685.	1.9	10
12	Mechanical and slow-released property of poly(acrylamide) hydrogel reinforced by diatomite. Materials Science and Engineering C, 2019, 99, 315-321.	3.8	45
13	Antifouling and Antibacterial Properties Constructed by Quaternary Ammonium and Benzyl Ester Derived from Lysine Methacrylamide. ACS Applied Materials & Interfaces, 2019, 11, 25556-25568.	4.0	36
14	Structural and Physicochemical Properties and Biocompatibility of Linear and Looped Polymer-Capped Gold Nanoparticles. Langmuir, 2019, 35, 8316-8324.	1.6	13
15	Fabrication of a polypropylene immunoassay platform by photografting reaction. Materials Science and Engineering C, 2019, 102, 492-501.	3.8	3
16	Effect of End-Grafted Polymer Conformation on Protein Resistance. Langmuir, 2018, 34, 2073-2080.	1.6	24
17	Surface modification of polyisobutylene via grafting amino acid-based poly (acryloyl-6-aminocaproic) Tj ETQq1	1 0.78431	4 rgBT /Over
18	A study of polyethylene glycol backfilling for enhancing target recognition using QCM-D and DPI. Journal of Materials Chemistry B, 2018, 6, 6217-6224.	2.9	8

Jing Jin

#	Article	IF	CITATIONS
19	Structural Effects of Residual Groups of Graphene Oxide on Poly(Îμ-Caprolactone)/Graphene Oxide Nanocomposite. Crystals, 2018, 8, 270.	1.0	9
20	Modified surface by poly(ethylene glycol) with looped conformation and its superior anticoagulant property. Scientia Sinica Chimica, 2018, 48, 972-980.	0.2	2
21	Hydrogen bonding induced protein adsorption on polymer brushes: a Monte Carlo study. Journal of Materials Chemistry B, 2017, 5, 8479-8486.	2.9	11
22	Preparation of chlorinated poly(propylene carbonate) and its distinguished properties. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1086-1096.	2.0	6
23	Capture and Release Erythrocyte from the Blood with Thermoresponsive and Coreâ€6heath PCL/PNIPAAm Nanofibers. Advanced Materials Interfaces, 2016, 3, 1500652.	1.9	9
24	Capturing red blood cells from the blood by lectin recognition on a glycopolymer-patterned surface. Journal of Materials Chemistry B, 2016, 4, 4130-4137.	2.9	13
25	pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion. Langmuir, 2016, 32, 4086-4094.	1.6	22
26	Effect of hydrophilicity of end-grafted polymers on protein adsorption behavior: A Monte Carlo study. Colloids and Surfaces B: Biointerfaces, 2016, 142, 38-45.	2.5	12
27	A smart core–sheath nanofiber that captures and releases red blood cells from the blood. Nanoscale, 2016, 8, 2022-2029.	2.8	36
28	Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets. Applied Surface Science, 2015, 351, 236-242.	3.1	15
29	Facile fabrication of microsphere-polymer brush hierarchically three-dimensional (3D) substrates for immunoassays. Chemical Communications, 2015, 51, 6749-6752.	2.2	22
30	Immobilization of nattokinase-loaded red blood cells on the surface of superhydrophobic polypropylene targeting fibrinolytic performance. Journal of Materials Chemistry B, 2015, 3, 3922-3926.	2.9	11
31	Hemocompatible, antioxidative and antibacterial polypropylene prepared by attaching silver nanoparticles capped with TPGS. Journal of Materials Chemistry B, 2015, 3, 8410-8420.	2.9	14
32	Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: A combined study using QCM-D and DPI. Colloids and Surfaces B: Biointerfaces, 2015, 136, 838-844.	2.5	36
33	Bovine serum albumin bioconjugated graphene oxide: Red blood cell adhesion and hemolysis studied by QCM-D. Applied Surface Science, 2015, 356, 844-851.	3.1	48
34	Fabricating antigen recognition and anti-bioadhesion polymeric surface via a photografting polymerization strategy. Materials Science and Engineering C, 2014, 36, 57-64.	3.8	6
35	Functionalization and hemocompatibility of a styrenic thermoplastic elastomer based on its epoxidized precursor. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
36	Immobilizing PEO–PPO–PEO triblock copolymers on hydrophobic surfaces and its effect on protein and platelet: A combined study using QCM-D and DPI. Colloids and Surfaces B: Biointerfaces, 2014, 123, 892-899.	2.5	20

Jing Jin

#	Article	IF	CITATIONS
37	Surface modification of poly(propylene carbonate) by layer-by-layer assembly and its hemocompatibility. RSC Advances, 2014, 4, 38943-38950.	1.7	7
38	Enhanced biocompatibility of biostable poly(styrene-b-isobutylene-b-styrene) elastomer via poly(dopamine)-assisted chitosan/hyaluronic acid immobilization. RSC Advances, 2014, 4, 31481.	1.7	19
39	Study of fibrinogen adsorption on poly(ethylene glycol)-modified surfaces using a quartz crystal microbalance with dissipation and a dual polarization interferometry. RSC Advances, 2014, 4, 7716.	1.7	33
40	Improving hemocompatibility of polypropylene via surface-initiated atom transfer radical polymerization for covalently coupling BSA. RSC Advances, 2014, 4, 24842-24851.	1.7	25
41	Stimuli-Responsive Polypropylene for the Sustained Delivery of TPGS and Interaction with Erythrocytes. ACS Applied Materials & amp; Interfaces, 2014, 6, 13956-13967.	4.0	19
42	Fabricating a Cycloolefin Polymer Immunoassay Platform with a Dual-Function Polymer Brush via a Surface-Initiated Photoiniferter-Mediated Polymerization Strategy. ACS Applied Materials & Interfaces, 2014, 6, 1971-1978.	4.0	50
43	Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion. RSC Advances, 2014, 4, 23528-23534.	1.7	8
44	Superhydrophobic coating of elastomer on different substrates using a liquid template to construct a biocompatible and antibacterial surface. Journal of Materials Chemistry B, 2014, 2, 7186-7191.	2.9	30
45	Surface modification of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer and its plasma protein adsorption by QCM-D. Applied Surface Science, 2014, 301, 300-306.	3.1	13
46	Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Colloids and Surfaces B: Biointerfaces, 2013, 111, 333-341.	2.5	22
47	Surface functionalization of styrenic block copolymer elastomeric biomaterials with hyaluronic acid via a "grafting to―strategy. Colloids and Surfaces B: Biointerfaces, 2013, 112, 146-154.	2.5	15
48	Plasma Proteins Adsorption Mechanism on Polyethylene-Grafted Poly(ethylene glycol) Surface by Quartz Crystal Microbalance with Dissipation. Langmuir, 2013, 29, 6624-6633.	1.6	60
49	Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement. Colloids and Surfaces B: Biointerfaces, 2013, 102, 45-52.	2.5	58
50	Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 2013, 102, 210-217.	2.5	37
51	Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol). Applied Surface Science, 2012, 258, 2344-2349.	3.1	26
52	Fabrication of PP-g-PEGMA-g-heparin and its hemocompatibility: From protein adsorption to anticoagulant tendency. Applied Surface Science, 2012, 258, 5841-5849.	3.1	50
53	Melting grafting polypropylene with hydrophilic monomers for improving hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 141-149.	2.3	21
54	Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. Colloids and Surfaces B: Biointerfaces, 2012, 93, 127-134.	2.5	54

Jing Jin

#	Article	IF	CITATIONS
55	Improving hemocompatibility of styrene-b-(ethylene-co-butylene)-b-styrene elastomer via N-vinyl pyrrolidone-assisted grafting of poly(ethylene glycol) methacrylate. Polymer, 2012, 53, 1675-1683.	1.8	32
56	Synthesis of amphiphilic poly(cyclooctene)-graft-poly(ethylene glycol) copolymersviaROMP and its surface properties. Polymer Chemistry, 2011, 2, 679-684.	1.9	16
57	Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid. Applied Surface Science, 2011, 258, 425-430.	3.1	39
58	Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science, 2011, 369, 5-12.	4.1	182