
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3693086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helmet noninvasive ventilation compared to facemask noninvasive ventilation and high-flow nasal cannula in acute respiratory failure: a systematic review and meta-analysis. European Respiratory Journal, 2022, 59, 2101269.	6.7	22
2	Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients With COVID-19 Acute Respiratory Distress Syndrome: A Combined CT Scan/Electrical Impedance Tomography Study*. Critical Care Medicine, 2022, 50, 723-732.	0.9	45
3	Reply to Jha: Addition of 5% CO ₂ to Inspiratory Gas in Preventing Lung Injury Due to Pulmonary Artery Ligation. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 587-588.	5.6	0
4	Effects of PEEP on regional ventilation-perfusion mismatch in the acute respiratory distress syndrome. Critical Care, 2022, 26, .	5.8	7
5	Sigh in Patients With Acute Hypoxemic Respiratory Failure and ARDS. Chest, 2021, 159, 1426-1436.	0.8	16
6	Esophageal balloon calibration during Sigh: A physiologic, randomized, cross-over study. Journal of Critical Care, 2021, 61, 125-132.	2.2	5
7	Measurement of Pleural Pressure. , 2021, , 485-491.		0
8	Physiological Effects of High Flow in Adults. , 2021, , 55-65.		0
9	Why improved PF ratio should not be our target when treating ARDS. Minerva Anestesiologica, 2021, 87, 752-754.	1.0	2
10	Atelectasis, Shunt, and Worsening Oxygenation Following Reduction of Respiratory Rate in Healthy Pigs Undergoing ECMO: An Experimental Lung Imaging Study. Frontiers in Physiology, 2021, 12, 663313.	2.8	3
11	Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. Critical Care, 2021, 25, 192.	5.8	39
12	Personalized Positive End-Expiratory Pressure and Tidal Volume in Acute Respiratory Distress Syndrome: Bedside Physiology-Based Approach. , 2021, 3, e0486.		6
13	Pulmonary volume-feedback and ventilatory pattern after bilateral lung transplantation using neurally adjusted ventilatory assist ventilation. British Journal of Anaesthesia, 2021, 127, 143-152.	3.4	7
14	Calculation of Transpulmonary Pressure From Regional Ventilation Displayed by Electrical Impedance Tomography in Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2021, 12, 693736.	2.8	4
15	Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Medicine, 2021, 47, 851-866.	8.2	115
16	Addition of 5% CO ₂ to Inspiratory Gas Prevents Lung Injury in an Experimental Model of Pulmonary Artery Ligation. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 933-942.	5.6	12
17	Ventilation During Veno-Venous Extracorporeal Membrane Oxygenation. , 2021, , 741-750.		0
18	Respiratory Drive in Patients with Sepsis and Septic Shock: Modulation by High-flow Nasal Cannula. Anesthesiology, 2021, 135, 1066-1075.	2.5	16

#	Article	IF	CITATIONS
19	Extracorporeal Chloride Removal by Electrodialysis. A Novel Approach to Correct Acidemia. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 799-813.	5.6	16
20	Understanding an unusual capnography waveform using electrical impedance tomography. Canadian Journal of Anaesthesia, 2020, 67, 141-142.	1.6	2
21	From monitoring to individualized settings during nasal high flow: ROX index to optimize flow rate?. Journal of Critical Care, 2020, 58, 133.	2.2	1
22	Dynamic assessment of the ROX index during nasal high flow for early identification of non-responders. Journal of Critical Care, 2020, 58, 130-131.	2.2	10
23	Oesophageal balloon calibration during pressure support ventilation: a proof of concept study. Journal of Clinical Monitoring and Computing, 2020, 34, 1223-1231.	1.6	5
24	Extracorporeal support to achieve lung-protective and diaphragm-protective ventilation. Current Opinion in Critical Care, 2020, 26, 66-72.	3.2	7
25	Lung and Diaphragm Protection during Noninvasive Respiratory Support. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 875-876.	5.6	1
26	High-Flow Nasal Cannula Compared With Conventional Oxygen Therapy or Noninvasive Ventilation Immediately Postextubation: A Systematic Review and Meta-Analysis. Critical Care Medicine, 2020, 48, e1129-e1136.	0.9	32
27	Potential for Lung Recruitment and Ventilation-Perfusion Mismatch in Patients With the Acute Respiratory Distress Syndrome From Coronavirus Disease 2019*. Critical Care Medicine, 2020, 48, 1129-1134.	0.9	177
28	Interdependence between elevated intra-abdominal, pleural, and airway opening pressure in severe acute respiratory distress syndrome with extracorporeal membrane oxygenation. British Journal of Anaesthesia, 2020, 125, e371-e373.	3.4	1
29	Nasal high flow higher than 60ÂL/min in patients with acute hypoxemic respiratory failure: a physiological study. Critical Care, 2020, 24, 654.	5.8	17
30	Personalized Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome: Comparison Between Optimal Distribution of Regional Ventilation and Positive Transpulmonary Pressure. Critical Care Medicine, 2020, 48, 1148-1156.	0.9	30
31	Gravitational distribution of regional opening and closing pressures, hysteresis and atelectrauma in ARDS evaluated by electrical impedance tomography. Critical Care, 2020, 24, 622.	5.8	16
32	Control of Respiratory Drive by Noninvasive Ventilation as an Early Predictor of Success. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1737-1738.	5.6	2
33	Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Medicine, 2020, 46, 2314-2326.	8.2	105
34	Cardio-respiratory physiology during one-lung ventilation: complex interactions in need of advanced monitoring. Annals of Translational Medicine, 2020, 8, 524-524.	1.7	3
35	Lung- and Diaphragm-Protective Ventilation. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 950-961.	5.6	166
36	Dissociation between the brain target and respiratory capacity in critically ill patients. Authors' reply. Intensive Care Medicine, 2020, 46, 1079-1080.	8.2	0

#	Article	IF	CITATIONS
37	Spontaneous Breathing Patterns During Maximum Extracorporeal CO ₂ Removal in Subjects With Early Severe ARDS. Respiratory Care, 2020, 65, 911-919.	1.6	12
38	Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Medicine, 2020, 46, 606-618.	8.2	149
39	Ultrasound-guided central venous catheter placement through the axillary vein in cardiac critical care patients: safety and feasibility of a novel technique in a prospective observational study. Minerva Anestesiologica, 2020, 86, 157-164.	1.0	6
40	Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography. Minerva Anestesiologica, 2020, 86, 1057-1064.	1.0	27
41	Electrical impedance tomography in perioperative medicine: careful respiratory monitoring for tailored interventions. BMC Anesthesiology, 2019, 19, 140.	1.8	38
42	Noninvasive assessment of airflows by electrical impedance tomography in intubated hypoxemic patients: an exploratory study. Annals of Intensive Care, 2019, 9, 83.	4.6	7
43	Microbiological colonization of healthcare workers' mobile phones in a tertiary-level Italian intensive care unit. Intensive and Critical Care Nursing, 2019, 52, 17-21.	2.9	13
44	Increasing support by nasal high flow acutely modifies the ROX index in hypoxemic patients: A physiologic study. Journal of Critical Care, 2019, 53, 183-185.	2.2	29
45	Nasal high flow: physiology, efficacy and safety in the acute care setting, a narrative review. Open Access Emergency Medicine, 2019, Volume 11, 109-120.	1.3	22
46	Assessment of Airway Driving Pressure and Respiratory System Mechanics during Neurally Adjusted Ventilatory Assist. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 785-788.	5.6	13
47	Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography. Critical Care, 2019, 23, 119.	5.8	31
48	Re-expansion pulmonary edema in a patient with anorexia nervosa and delayed drainage of traumatic pneumothorax. AME Case Reports, 2019, 3, 46-46.	0.6	0
49	A personalized approach to the acute respiratory distress syndrome: recent advances and future challenges. Journal of Thoracic Disease, 2019, 11, 5619-5625.	1.4	13
50	Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study. Critical Care, 2019, 23, 369.	5.8	27
51	Short-term Physiologic Consequences of Regional Pulmonary Vascular Occlusion in Pigs. Anesthesiology, 2019, 131, 336-343.	2.5	13
52	Nasal High Flow Delivered within the Helmet: A New Noninvasive Respiratory Support. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 115-117.	5.6	14
53	What's new in electrical impedance tomography. Intensive Care Medicine, 2019, 45, 674-677.	8.2	9
54	Update in Critical Care Medicine 2017. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1382-1388.	5.6	1

#	Article	IF	CITATIONS
55	A spiky pattern in the course of electrical thoracic impedance as a very early sign of a developing pneumothorax. Clinical Physiology and Functional Imaging, 2018, 38, 158-162.	1.2	5
56	Thoracic electrical impedance tomography: an adaptive monitor for dynamic organs. Journal of Emergency and Critical Care Medicine, 2018, 2, 71-71.	0.7	2
57	An open-loop, physiological model based decision support system can reduce pressure support while acting to preserve respiratory muscle function. Journal of Critical Care, 2018, 48, 407-413.	2.2	13
58	Pressure support ventilation + sigh in acute hypoxemic respiratory failure patients: study protocol for a pilot randomized controlled trial, the PROTECTION trial. Trials, 2018, 19, 460.	1.6	3
59	Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Medicine, 2018, 44, 1388-1399.	8.2	82
60	Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Critical Care, 2018, 22, 26.	5.8	82
61	Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula. Critical Care, 2018, 22, 120.	5.8	88
62	Intraperitoneal adoptive transfer of mesenchymal stem cells enhances recovery from acid aspiration acute lung injury in mice. Intensive Care Medicine Experimental, 2017, 5, 13.	1.9	10
63	Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax, 2017, 72, 83-93.	5.6	580
64	Respiratory support after extubation: noninvasive ventilation or high-flow nasal cannula, as appropriate. Annals of Intensive Care, 2017, 7, 52.	4.6	10
65	The ten pressures of the respiratory system during assisted breathing. Intensive Care Medicine, 2017, 43, 1504-1506.	8.2	4
66	Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1207-1215.	5.6	390
67	Effects of Variable Pressure Support Ventilation on Regional Homogeneity and Aeration. American Journal of Respiratory and Critical Care Medicine, 2017, 195, e27-e28.	5.6	4
68	Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiological Measurement, 2017, 38, R280-H303.	2.1	28
69	Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Medicine, 2017, 43, 1453-1463.	8.2	180
70	Systematic assessment of advanced respiratory physiology: precision medicine entering real-life ICU?. Critical Care, 2017, 21, 143.	5.8	4
71	Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. European Journal of Clinical Investigation, 2017, 47, 73-83.	3.4	71
72	Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Annals of Intensive Care, 2017, 7, 76.	4.6	67

#	Article	IF	CITATIONS
73	Spontaneous breathing: a double-edged sword to handle with care. Annals of Translational Medicine, 2017, 5, 292-292.	1.7	54
74	Control of Respiratory Drive and Effort in Extracorporeal Membrane Oxygenation Patients Recovering from Severe Acute Respiratory Distress Syndrome. Anesthesiology, 2016, 125, 159-167.	2.5	89
75	Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. British Journal of Anaesthesia, 2016, 116, 855-861.	3.4	51
76	Can diaphragmatic ultrasonography performed during the T-tube trial predict weaning failure? The role of diaphragmatic rapid shallow breathing index. Critical Care, 2016, 20, 305.	5.8	82
77	Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Medicine, 2016, 42, 1576-1587.	8.2	78
78	Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Medicine, 2016, 42, 2101-2103.	8.2	46
79	Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Medicine, 2016, 42, 1360-1373.	8.2	352
80	Do spontaneous and mechanical breathing have similar effects on average transpulmonary and alveolar pressure? A clinical crossover study. Critical Care, 2016, 20, 142.	5.8	94
81	Ventilator Management During ECLS. Respiratory Medicine, 2016, , 163-180.	0.1	0
82	Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests. Critical Care, 2015, 19, 425.	5.8	28
83	Effects of Sigh on Regional Lung Strain and Ventilation Heterogeneity in Acute Respiratory Failure Patients Undergoing Assisted Mechanical Ventilation*. Critical Care Medicine, 2015, 43, 1823-1831.	0.9	52
84	Pain control with ultrasound-guided inguinal field block compared with spinal anesthesia after hernia surgery:ÂA randomized trial. Surgery, 2015, 157, 304-311.	1.9	4
85	Amplitude Spectrum Area to Guide Defibrillation. Circulation, 2015, 131, 478-487.	1.6	76
86	L1–2 roots block with psoas compartment block?. British Journal of Anaesthesia, 2014, 112, 592-593.	3.4	0
87	Alveolar pentraxin 3 as an early marker of microbiologically confirmed pneumonia: a threshold-finding prospective observational study. Critical Care, 2014, 18, 562.	5.8	44
88	New treatment bundles improve survival in out-of-hospital cardiac arrest patients: A historical comparison. Resuscitation, 2014, 85, 1240-1244.	3.0	25
89	Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Critical Care, 2014, 18, R6.	5.8	175
90	Clinical Assessment of Auto-positive End-expiratory Pressure by Diaphragmatic Electrical Activity during Pressure Support and Neurally Adjusted Ventilatory Assist. Anesthesiology, 2014, 121, 563-571.	2.5	33

#	Article	IF	CITATIONS
91	Patient–ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: a novel approach based on diaphragm electrical activity. Intensive Care Medicine, 2013, 39, 282-291.	8.2	92
92	Regional Distribution of Air Trapping in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1466-1467.	5.6	22
93	Estimation of Patient's Inspiratory Effort From the Electrical Activity of the Diaphragm*. Critical Care Medicine, 2013, 41, 1483-1491.	0.9	136
94	Topographic Distribution of Tidal Ventilation in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2013, 41, 1664-1673.	0.9	95
95	Psoas compartment block for anaesthesia during surgical repair of inguinal hernias. British Journal of Anaesthesia, 2013, 111, 298-299.	3.4	3
96	Transpulmonary Pressure at Functional Residual Capacity. Critical Care Medicine, 2013, 41, e9.	0.9	3
97	Effect of Percutaneous Tracheostomy on Gas Exchange in Hypoxemic and Non-hypoxemic Mechanically Ventilated Patients. Respiratory Care, 2013, 58, 482-486.	1.6	7
98	lmaging in acute lung injury and acute respiratory distress syndrome. Current Opinion in Critical Care, 2012, 18, 29-34.	3.2	34
99	Successful use of neurally adjusted ventilatory assist in a patient with extremely low respiratory system compliance undergoing ECMO. Intensive Care Medicine, 2011, 37, 166-167.	8.2	23
100	Lung Regional Metabolic Activity and Gas Volume Changes Induced by Tidal Ventilation in Patients with Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1193-1199.	5.6	188
101	Elevated Plasma and Alveolar Levels of Soluble Receptor for Advanced Glycation Endproducts Are Associated with Severity of Lung Dysfunction in ARDS Patients. Tohoku Journal of Experimental Medicine, 2010, 222, 105-112.	1.2	31
102	Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Medicine, 2010, 36, 621-629.	8.2	137
103	Lateral-horizontal patient position and horizontal orientation of the endotracheal tube to prevent aspiration in adult surgical intensive care unit patients: a feasibility study. Respiratory Care, 2010, 55, 294-302.	1.6	28
104	Short-term evaluation of sedation with sevoflurane administered by the anesthetic conserving device in critically ill patients. Intensive Care Medicine, 2009, 35, 1240-6.	8.2	42
105	Pentraxin 3 in acute respiratory distress syndrome: An early marker of severity*. Critical Care Medicine, 2008, 36, 2302-2308.	0.9	669
106	Extravascular lung water as a predictor of mortality in acute respiratory distress syndrome. Critical Care Medicine, 2008, 36, 2220-2221.	0.9	8
107	Ion balance. , 0, , 396-401.		0
108	Inhaled CO2 vs. Hypercapnia Obtained by Low Tidal Volume or Instrumental Dead Space in Unilateral Pulmonary Artery Ligation: Any Difference for Lung Protection?. Frontiers in Medicine, 0, 9, .	2.6	1