Motoki Kino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3693044/publications.pdf

Version: 2024-02-01

53660 26548 11,699 129 45 107 citations h-index g-index papers 129 129 129 4583 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	3.0	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	3.0	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	3.0	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	3.0	806
5	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	3.0	618
6	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	3.0	568
7	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	3.0	519
8	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	3.0	297
9	An origin of the radio jet in M87 at the location of the central black hole. Nature, 2011, 477, 185-187.	13.7	224
10	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	3.0	215
11	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	3.0	215
12	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	3.0	187
13	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	3.0	175
14	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	3.0	163
15	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	3.0	142
16	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	3.0	137
17	HIGH-SENSITIVITY 86 GHz (3.5 mm) VLBI OBSERVATIONS OF M87: DEEP IMAGING OF THE JET BASE AT A RESOLUTION OF 10 SCHWARZSCHILD RADII. Astrophysical Journal, 2016, 817, 131.	1.6	136
18	THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO â^1⁄410 SCHWARZSCHILD RADII. Astrophysical Journal, 2013, 775, 70.	1.6	121

#	Article	IF	Citations
19	Parabolic Jets from the Spinning Black Hole in M87. Astrophysical Journal, 2018, 868, 146.	1.6	103
20	A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii. Nature Astronomy, 2018, 2, 472-477.	4.2	99
21	230 GHz VLBI OBSERVATIONS OF M87: EVENTâ€HORIZONâ€SCALE STRUCTURE DURING AN ENHANCED VERYâ€HIGHâ€ENERGY \$gamma \$â€RAY STATE IN 2012. Astrophysical Journal, 2015, 807, 150.	1.6	98
22	Energetics of TeV Blazars and Physical Constraints on Their Emission Regions. Astrophysical Journal, 2002, 564, 97-107.	1.6	97
23	LIMB-BRIGHTENED JET OF 3C 84 REVEALED BY THE 43 GHz VERY-LONG-BASELINE-ARRAY OBSERVATION. Astrophysical Journal, 2014, 785, 53.	1.6	87
24	MULTIWAVELENGTH MONITORING OF THE ENIGMATIC NARROW-LINE SEYFERT 1 PMN J0948+0022 IN 2009 MARCH-JULY. Astrophysical Journal, 2009, 707, 727-737.	1.6	81
25	The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA. Astrophysical Journal, 2019, 871, 30.	1.6	81
26	KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES. Astrophysical Journal, 2012, 760, 41.	1.6	77
27	The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths. Astrophysical Journal, 2018, 865, 104.	1.6	67
28	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	3.0	67
29	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	4.2	65
30	VLBI Monitoring of 3C 84 (NGC 1275) in Early Phase of the 2005 Outburst. Publication of the Astronomical Society of Japan, 2010, 62, L11-L15.	1.0	62
31	Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet. Astrophysical Journal, 2019, 871, 257.	1.6	62
32	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	3.0	56
33	Constraints on the energetics and plasma composition of relativistic jets in FR II sources. Monthly Notices of the Royal Astronomical Society, 2004, 349, 336-346.	1.6	54
34	Nonthermal Emission Associated with Strong AGN Outbursts at the Centers of Galaxy Clusters. Astrophysical Journal, 2007, 663, L61-L64.	1.6	54
35	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	2.1	54
36	MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM. Astrophysical Journal, 2015, 803, 30.	1.6	53

#	Article	IF	Citations
37	The kinematic of HST-1 in the jet of M 87. Astronomy and Astrophysics, 2012, 538, L10.	2.1	52
38	A STRONG RADIO BRIGHTENING AT THE JET BASE OF M 87 DURING THE ELEVATED VERY HIGH ENERGY GAMMA-RAY STATE IN 2012. Astrophysical Journal, 2014, 788, 165.	1.6	52
39	Pilot KaVA monitoring on the MÂ87 jet: Confirming the inner jet structure and superluminal motions at sub-pc scales. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	51
40	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	1.6	51
41	Radio and \hat{I}^3 -ray follow-up of the exceptionally high-activity state of PKS 1510 \hat{I}^3 089 in 2011. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2418-2429.	1.6	50
42	EXPLORING THE CENTRAL SUB-PARSEC REGION OF THE $\hat{1}^3$ -RAY BRIGHT RADIO GALAXY 3C 84 WITH VLBA AT 43 GHz IN THE PERIOD OF 2002-2008. Astrophysical Journal, 2012, 746, 140.	1.6	49
43	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	1.6	47
44	Kinematics of the M87 Jet in the Collimation Zone: Gradual Acceleration and Velocity Stratification. Astrophysical Journal, 2019, 887, 147.	1.6	46
45	The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275. Astrophysical Journal, 2019, 883, 193.	1.6	46
46	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	1.6	44
47	Radio-to- <i>\hat{i}^3</i> -ray monitoring of the narrow-line Seyfert 1 galaxy PMNÂJ0948Â+Â0022 from 2008 to 2011. Astronomy and Astrophysics, 2012, 548, A106.	2.1	43
48	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	1.6	43
49	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	3.0	43
50	VLBI observations of bright AGN jets with the KVN and VERA Array (KaVA): Evaluation of imaging capability. Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	42
51	VLBA monitoring of Mrk 421 at 15 GHz and 24 GHz during 2011. Astronomy and Astrophysics, 2012, 54 A117.	·5 2.1	41
52	Estimate of the total kinetic power and age of an extragalactic jet by its cocoon dynamics: the case of Cygnus A. Monthly Notices of the Royal Astronomical Society, 2005, 364, 659-664.	1.6	36
53	VLBI OBSERVATIONS OF THE JET IN M 87 DURING THE VERY HIGH ENERGY Î ³ -RAY FLARE IN 2010 APRIL. Astrophysical Journal, 2012, 760, 52.	1.6	36
54	Global e-VLBI observations of the gamma-ray narrow line SeyfertÂ1 PMN J0948+0022. Astronomy and Astrophysics, 2011, 528, L11.	2.1	35

#	Article	IF	CITATIONS
55	Chandradiscovery of an X-ray jet and lobes in 3CÂ15. Astronomy and Astrophysics, 2003, 410, 833-845.	2.1	35
56	The Estimate of Kinetic Power of Jets in FR II Radio Galaxies: Existence of Invisible Components?. Astrophysical Journal, 2008, 685, 828-838.	1.6	34
57	RELATIVISTIC ELECTRONS AND MAGNETIC FIELDS OF THE M87 JET ON THE â^1/410 SCHWARZSCHILD RADII SCALE Astrophysical Journal, 2014, 786, 5.	1.6	33
58	The Fate of Young Radio Galaxies: Decelerations Inside Host Galaxies?. Astrophysical Journal, 2008, 687, 141-155.	1.6	31
59	ON THE ORIGIN OF FANAROFF-RILEY CLASSIFICATION OF RADIO GALAXIES: DECELERATION OF SUPERSONIC RADIO LOBES. Astrophysical Journal, 2009, 697, L173-L176.	1.6	29
60	KVN observations reveal multiple \hat{I}^3 -ray emission regions in 3C \hat{a} \in %84?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 368-378.	1.6	29
61	Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium. Astrophysical Journal, 2017, 849, 52.	1.6	28
62	VLBI and single-dish monitoring of 3C 84 for the period 2009-2011. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L122-L126.	1.2	26
63	Very Long Baseline polarimetry and the <i>\hat{l}^3</i> -ray connection in Markarian 421 during the broadband campaign in 2011. Astronomy and Astrophysics, 2014, 571, A54.	2.1	25
64	Jet Collimation and Acceleration in the Giant Radio Galaxy NGC 315. Astrophysical Journal, 2021, 909, 76.	1.6	25
65	Hydrodynamic Effects in Internal Shock of Relativistic Outflows. Astrophysical Journal, 2004, 611, 1021-1032.	1.6	24
66	The TeV blazar Markarian 421 at the highest spatial resolution. Astronomy and Astrophysics, 2013, 559, A75.	2.1	24
67	INTERFEROMETRIC MONITORING OF GAMMA-RAY BRIGHT AGNs. I. THE RESULTS OF SINGLE-EPOCH MULTIFREQUENCY OBSERVATIONS. Astrophysical Journal, Supplement Series, 2016, 227, 8.	3.0	24
68	HYSTERESIS OF BACKFLOW IMPRINTED IN COLLIMATED JETS. Astrophysical Journal Letters, 2010, 709, L83-L87.	3.0	23
69	Black Hole Spin Signature in the Black Hole Shadow of M87 in the Flaring State. Astrophysical Journal, 2019, 878, 27.	1.6	23
70	EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM RADIO LOBES OF CYGNUS A. Astrophysical Journal, 2010, 714, 37-44.	1.6	22
71	The GENJI Programme: Gamma-Ray Emitting Notable AGN Monitoring by Japanese VLBI. Publication of the Astronomical Society of Japan, 2013, 65, .	1.0	22
72	CALORIMETRY OF ACTIVE GALACTIC NUCLEUS JETS: TESTING PLASMA COMPOSITION IN CYGNUS A. Astrophysical Journal, 2012, 751, 101.	1.6	21

#	Article	IF	Citations
73	Revealing the Nature of Blazar Radio Cores through Multifrequency Polarization Observations with the Korean VLBI Network. Astrophysical Journal, 2018, 860, 112.	1.6	21
74	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	3.0	21
75	Mini-radio lobes in AGN core illumination and their hadronic gamma-ray afterlight. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L20-L24.	1.2	20
76	Fast-spinning Black Holes Inferred from Symmetrically Limb-brightened Radio Jets. Astrophysical Journal, 2018, 868, 82.	1.6	20
77	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	3.0	20
78	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	3.0	20
79	A Recollimation Shock in a Stationary Jet Feature with Limb-brightening in the Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxy 1H 0323+342. Astrophysical Journal Letters, 2018, 857, L6.	3.0	19
80	Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz. Astrophysical Journal, 2021, 915, 99.	1.6	19
81	Long-term millimeter VLBI monitoring of M 87 with KVN at milliarcsecond resolution: nuclear spectrum. Astronomy and Astrophysics, 2018, 610, L5.	2.1	18
82	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	2.1	18
83	INTERFEROMETRIC MONITORING OF GAMMA–RAY BRIGHT ACTIVE GALACTIC NUCLEI II: FREQUENCY PHASE TRANSFER. Journal of the Korean Astronomical Society, 2015, 48, 237-255.	1.5	18
84	Evidence of Jet–Clump Interaction: A Flip of the Radio Jet Head of 3C 84. Astrophysical Journal, 2018, 864, 118.	1.6	17
85	Evidence for a significant mixture of electron/positron pairs in FRII jets constrained by cocoon dynamics. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1124-1136.	1.6	16
86	Exploring the Variability of the Flat Spectrum Radio Source 1633+382. I. Phenomenology of the Light Curves. Astrophysical Journal, 2018, 852, 30.	1.6	16
87	The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer. Astronomical Journal, 2018, 155, 26.	1.9	14
88	Exploring the Variability of the Flat-spectrum Radio Source 1633+382. II. Physical Properties. Astrophysical Journal, 2018, 859, 128.	1.6	14
89	Ejection of Double Knots from the Radio Core of PKS 1510–089 during the Strong Gamma-Ray Flares in 2015. Astrophysical Journal, 2019, 877, 106.	1.6	14
90	Jet kinematics of the quasar 4C+21.35 from observations with the KaVA very long baseline interferometry array. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2412-2421.	1.6	14

#	Article	IF	Citations
91	A comparative study of amplitude calibrations for the East Asia VLBI Network: A priori and template spectrum methods. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	13
92	VERA monitoring of the radio jet 3C 84 in the period of 2007–2013: Detection of non-linear motion. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	13
93	The Intrinsic Structure of Sagittarius A* at 1.3 cm and 7 mm. Astrophysical Journal, 2022, 926, 108.	1.6	13
94	POSSIBLE DETECTION OF APPARENT SUPERLUMINAL INWARD MOTION IN MARKARIAN 421 AFTER THE GIANT X-RAY FLARE IN 2010 FEBRUARY. Astrophysical Journal, 2012, 759, 84.	1.6	12
95	Nature of radio feature formed by reâ€started jet activity in 3C 84 and its relation with <i>γ</i> â€ray emissions. Astronomische Nachrichten, 2016, 337, 69-72.	0.6	12
96	A Jet-bases Emission Model of the EHT2017 Image of M87*. Astrophysical Journal, 2021, 909, 168.	1.6	12
97	Interferometric Monitoring of Gamma-Ray Bright AGNs: OJ 287. Astrophysical Journal, 2020, 902, 104.	1.6	12
98	East Asian VLBI Network observations of active galactic nuclei jets: imaging with KaVA+Tianma+Nanshan. Research in Astronomy and Astrophysics, 2021, 21, 205.	0.7	12
99	Morphological Transition of the Compact Radio Lobe in 3C 84 via the Strong Jet–Cloud Collision. Astrophysical Journal Letters, 2021, 920, L24.	3.0	12
100	Discovery of off-axis jet structure of TeV blazar Mrk 501 with mm-VLBI. Astronomy and Astrophysics, 2016, 586, A113.	2.1	11
101	Constraints on the Circumnuclear Disk through Free–Free Absorption in the Nucleus of 3C 84 with KaVA and KVN at 43 and 86 GHz. Astrophysical Journal, 2020, 895, 35.	1.6	11
102	NEW CLASS OF VERY HIGH ENERGY Î ³ -RAY EMITTERS: RADIO-DARK MINI SHELLS SURROUNDING ACTIVE GALACTIC NUCLEUS JETS. Astrophysical Journal, 2013, 764, 134.	1.6	10
103	DISCOVERY OF A WANDERING RADIO JET BASE AFTER A LARGE X-RAY FLARE IN THE BLAZAR MARKARIAN 421. Astrophysical Journal Letters, 2015, 807, L14.	3.0	10
104	Mid-infrared Excess from the West Hot Spot of the Radio Galaxy Pictor A Unveiled by WISE. Astrophysical Journal, 2017, 850, 193.	1.6	9
105	Exploring the nature of the 2016 \hat{l}^3 -ray emission in the blazar 1749+096. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2324-2333.	1.6	9
106	Exploring the Morphology and Origins of the 4C 38.41 Jet. Astrophysical Journal, 2019, 886, 85.	1.6	9
107	EVOLUTION OF NON-THERMAL SHELL EMISSION ASSOCIATED WITH ACTIVE GALACTIC NUCLEUS JETS. Astrophysical Journal, 2011, 730, 120.	1.6	8
108	PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES. Journal of the Korean Astronomical Society, 2015, 48, 299-311.	1.5	8

#	Article	IF	Citations
109	FIRST DETECTION OF 350 MICRON POLARIZATION FROM A RADIO-LOUD AGN. Astrophysical Journal Letters, 2015, 808, L26.	3.0	7
110	Fossil Shell in 3C 84 as TeV \hat{I}^3 -Ray Emitter and Cosmic-Ray Accelerator. Astrophysical Journal, 2017, 843, 82.	1.6	6
111	Radio jet structures at â^¼100 pc and larger scales of the γ-ray-emitting narrow-line Seyfert 1 galaxy PMN J0948+0022. Monthly Notices of the Royal Astronomical Society, 2019, 487, 640-649.	1.6	6
112	The radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 in a galaxy merger. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1757-1765.	1.6	6
113	Interferometric monitoring of gamma-ray bright AGNs: Measuring the magnetic field strength of 4C +29.45. Astronomy and Astrophysics, 2021, 651, A74.	2.1	6
114	Herschel SPIRE Discovery of Far-infrared Excess Synchrotron Emission from the West Hot Spot of the Radio Galaxy Pictor A. Astrophysical Journal, 2020, 899, 17.	1.6	6
115	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	1.6	6
116	THE FATE OF DEAD RADIO-LOUD ACTIVE GALACTIC NUCLEI: A NEW PREDICTION OF LONG-LIVED SHELL EMISSION. Astrophysical Journal, 2015, 806, 241.	1.6	5
117	KEY SCIENCE OBSERVATIONS OF AGNs WITH THE KaVA ARRAY. Publications of the Korean Astronomical Society, 2015, 30, 633-636.	0.1	5
118	A Revised View of the Linear Polarization in the Subparsec Core of M87 at 7 mm. Astrophysical Journal, 2021, 922, 180.	1.6	5
119	On invisible plasma content in radio-loud AGNs: the case of TeV blazar Markarian 421. Monthly Notices of the Royal Astronomical Society, 0, 383, 713-719.	1.6	4
120	Probing the precise location of the radio core in the TeV blazar Mrk 501 with VERA at 43 GHz. Publication of the Astronomical Society of Japan, 2015, 67, .	1.0	4
121	Fossil shell emission in dying radio loud AGNs. Astronomische Nachrichten, 2016, 337, 47-51.	0.6	4
122	ALMA Continuum Spectrum of the M87 Nucleus. EPJ Web of Conferences, 2013, 61, 08008.	0.1	3
123	IMAGING CAPABILITY OF THE KVN AND VERA ARRAYS (KaVA). Publications of the Korean Astronomical Society, 2015, 30, 637-639.	0.1	3
124	Relativistic jet acceleration region in a black hole magnetosphere. Physical Review D, 2021, 104, .	1.6	3
125	<i>Herschel</i> discovery of far-infrared emission from the hotspot D in the radio galaxy CygnusÂA. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5995-6006.	1.6	3
126	Millimeter VLBI observations of Sgr A* with KaVA and KVN. Proceedings of the International Astronomical Union, 2016, $11, 56-63$.	0.0	1

Мотокі Кіно

#	Article	IF	CITATIONS
127	Stable Radio Core of the Blazar Mrk 501 during High-energy Active State in 2012. Astrophysical Journal, 2019, 884, 132.	1.6	1
128	A strong radio brightening at the jet base of M87 during the elevated very-high-energy \hat{l}^3 -ray state in 2012. Proceedings of the International Astronomical Union, 2014, 10, 340-345.	0.0	0
129	Flip of the jet head position of 3C 84 in 2015. Proceedings of the International Astronomical Union, 2018, 14, 227-228.	0.0	O