
Rahul Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3692980/publications.pdf Version: 2024-02-01

Ρλητι Κιιμαρ

#	Article	IF	CITATIONS
1	Experimental Schistosoma japonicum-induced pulmonary hypertension. PLoS Neglected Tropical Diseases, 2022, 16, e0010343.	3.0	4
2	Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L355-L371.	2.9	8
3	The role of macrophages in right ventricular remodeling in experimental pulmonary hypertension. Pulmonary Circulation, 2022, 12, .	1.7	3
4	Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L675-L685.	2.9	7
5	Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension. Cellular and Molecular Immunology, 2021, 18, 374-384.	10.5	36
6	Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2020, 116, 2021-2030.	3.8	34
7	Sex-derived attributes contributing to SARS-CoV-2 mortality. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E562-E567.	3.5	55
8	Schistosomiasis Pulmonary Arterial Hypertension. Frontiers in Immunology, 2020, 11, 608883.	4.8	22
9	Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Research, 2020, 6, 00405-2020.	2.6	12
10	Susceptibility to high-altitude pulmonary edema is associated with circulating miRNA levels under hypobaric hypoxia conditions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L360-L368.	2.9	8
11	Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment. Scientific Reports, 2020, 10, 413.	3.3	24
12	IL-6Ra in Smooth Muscle Cells Protects against <i>Schistosoma</i> - and Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 123-126.	2.9	5
13	Th2 CD4 ⁺ T Cells Are Necessary and Sufficient for <i>Schistosomaâ€</i> Pulmonary Hypertension. Journal of the American Heart Association, 2019, 8, e013111.	3.7	27
14	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
15	Common genetic variants in pulmonary arterial hypertension. Lancet Respiratory Medicine,the, 2019, 7, 190-191.	10.7	6
16	Paclitaxel blocks Th2â€mediated TGFâ€Î² activation in <i>Schistosoma mansoni</i> â€induced pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-8.	1.7	7
17	How does inflammation contribute to pulmonary hypertension?. European Respiratory Journal, 2018, 51, 1702403.	6.7	28
18	IL-33-HIF1α Axis in Hypoxic Pulmonary Hypertension. EBioMedicine, 2018, 33, 8-9.	6.1	3

RAHUL KUMAR

#	Article	IF	CITATIONS
19	Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 479-489.	2.9	37
20	NEDD9 targets <i>COL3A1</i> to promote endothelial fibrosis and pulmonary arterial hypertension. Science Translational Medicine, 2018, 10, .	12.4	89
21	TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nature Communications, 2017, 8, 15494.	12.8	102
22	Impact of interactions between risk alleles on clinical endpoints in hypertension. Heart Asia, 2016, 8, 83-89.	1.1	6
23	Unveiling the interactions among BMPR-2, ALK-1 and 5-HTT genes in the pathophysiology of HAPE. Gene, 2016, 588, 163-172.	2.2	4
24	The Defining Characteristics of Pulmonary Arterial Hypertension. , 2016, , 17-28.		0
25	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	6.9	120
26	Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Reports, 2015, 13, 1016-1032.	6.4	193
27	CYBA (p22phox) variants associate with blood pressure and oxidative stress markers in hypertension: a replication study in populations of diverse altitudes. Hypertension Research, 2015, 38, 498-506.	2.7	13
28	Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L435-L440.	2.9	45
29	The Causal Role of IL-4 and IL-13 in <i>Schistosoma mansoni</i> Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 998-1008.	5.6	71
30	Interactions Between the Genes of Vasodilatation Pathways Influence Blood Pressure and Nitric Oxide Level in Hypertension. American Journal of Hypertension, 2015, 28, 239-247.	2.0	19
31	Schistosomiasis and the Pulmonary Vasculature (2013 Grover Conference Series). Pulmonary Circulation, 2014, 4, 353-362.	1.7	21
32	Association between the Glu298Asp and 4b/4a polymorphisms of endothelial nitric oxide synthase and coronary slow flow in the North Indian population. Coronary Artery Disease, 2014, 25, 192-197.	0.7	10
33	Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. Journal of Clinical Investigation, 2014, 124, 3514-3528.	8.2	182
34	β-T594M epithelial sodium channel gene polymorphism and essential hypertension in individuals of Indo-Aryan ancestry in Northern India. Indian Heart Journal, 2014, 66, 397-400.	0.5	4
35	Role of Vascular Endothelial Growth Factor Signaling in <i>Schistosoma</i> â€Induced Experimental Pulmonary Hypertension. Pulmonary Circulation, 2014, 4, 289-299.	1.7	10
36	Role of ILâ€4 and ILâ€13 in Schistosomaâ€induced pulmonary hypertension (LB780). FASEB Journal, 2014, 28, LB780.	0.5	1

RAHUL KUMAR

#	Article	IF	CITATIONS
37	Pathology of Pulmonary Hypertension. Clinics in Chest Medicine, 2013, 34, 639-650.	2.1	214
38	Protective Role of IL-6 in Vascular Remodeling in <i>Schistosoma</i> Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 951-959.	2.9	43
39	Interactions between the FTO and GNB3 Genes Contribute to Varied Clinical Phenotypes in Hypertension. PLoS ONE, 2013, 8, e63934.	2.5	17
40	The epistasis between vascular homeostasis genes is apparent in essential hypertension. Atherosclerosis, 2012, 220, 418-424.	0.8	10
41	Interactions among Vascular-Tone Modulators Contribute to High Altitude Pulmonary Edema and Augmented Vasoreactivity in Highlanders. PLoS ONE, 2012, 7, e44049.	2.5	36
42	<i>CYBA</i> and <i>GSTP1</i> variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema. Clinical Science, 2012, 122, 299-311.	4.3	24
43	Association of GNB3 C825T polymorphism with plasma electrolyte balance and susceptibility to hypertension. Genetics and Molecular Biology, 2011, 34, 553-556.	1.3	9
44	CYP11B2 gene haplotypes independently and in concurrence with aldosterone and aldosterone to renin ratio increase the risk of hypertension. Clinical Biochemistry, 2010, 43, 136-141.	1.9	15
45	Multi-locus interactions of vascular homeostasis genes in essential hypertension: A gender-based study. Clinica Chimica Acta, 2009, 405, 87-93.	1.1	21
46	Endothelial nitric oxide synthase gene haplotypes and circulating nitric oxide levels significantly associate with risk of essential hypertension. Free Radical Biology and Medicine, 2008, 44, 1912-1918.	2.9	42
47	Significance of angiotensinogen gene haplotypes and genotypes combinations in hypertension. Journal of Hypertension, 2008, 26, 1094-1101.	0.5	27
48	Angiotensinogen gene haplotypes in hypertension. Journal of Hypertension, 2008, 26, 2452-2453.	0.5	0
49	Single Cell RNA Sequencing and Binary Hierarchical Clustering Defines Lung Interstitial Macrophage Heterogeneity in Response to Hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	2.9	1
50	Sexual Dimorphism of Dexamethasone as a Prophylactic Treatment in Pathologies Associated With Acute Hypobaric Hypoxia Exposure. Frontiers in Pharmacology, 0, 13, .	3.5	2