List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3692633/publications.pdf Version: 2024-02-01

		3726	2178
315	44,143	89	202
papers	citations	h-index	g-index
334	334	334	43084
all docs	docs citations	times ranked	citing authors

TOM RUUNDELL

#	Article	IF	CITATIONS
1	Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology, 1993, 234, 779-815.	2.0	11,892
2	pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 2015, 58, 4066-4072.	2.9	2,335
3	FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties11Edited by B. Honig. Journal of Molecular Biology, 2001, 310, 243-257.	2.0	1,185
4	The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell, 1999, 11, 1337-1349.	3.1	905
5	mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 2014, 30, 335-342.	1.8	779
6	Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature, 2000, 407, 1029-1034.	13.7	704
7	Knowledge-based prediction of protein structures and the design of novel molecules. Nature, 1987, 326, 347-352.	13.7	692
8	DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 2014, 42, W314-W319.	6.5	664
9	Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature, 2002, 420, 287-293.	13.7	615
10	Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature, 1969, 224, 491-495.	13.7	532
11	Definition of general topological equivalence in protein structures. Journal of Molecular Biology, 1990, 212, 403-428.	2.0	509
12	New protein fold revealed by a 2.3-Ã resolution crystal structure of nerve growth factor. Nature, 1991, 354, 411-414.	13.7	500
13	High-throughput crystallography for lead discovery in drug design. Nature Reviews Drug Discovery, 2002, 1, 45-54.	21.5	490
14	The molecular structure and stability of the eye lens: X-ray analysis of Î ³ -crystallin II. Nature, 1981, 289, 771-777.	13.7	480
15	X-ray analysis of HIV-1 proteinase at 2.7 Ã resolution confirms structural homology among retroviral enzymes. Nature, 1989, 342, 299-302.	13.7	477
16	Structure of pentameric human serum amyloid P component. Nature, 1994, 367, 338-345.	13.7	471
17	HOMSTRAD: A database of protein structure alignments for homologous families. Protein Science, 1998, 7, 2469-2471.	3.1	461
18	SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 2011, 39, W215-W222.	6.5	453

#	Article	IF	CITATIONS
19	Receptor-binding region of insulin. Nature, 1976, 259, 369-373.	13.7	444
20	Structural evidence for gene duplication in the evolution of the acid proteases. Nature, 1978, 271, 618-621.	13.7	441
21	SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Research, 2017, 45, W229-W235.	6.5	407
22	JOY: protein sequence-structure representation and analysis. Bioinformatics, 1998, 14, 617-623.	1.8	384
23	Knowledge based modelling of homologous proteins, part I: three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Engineering, Design and Selection, 1987, 1, 377-384.	1.0	365
24	Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. Journal of Molecular Biology, 2017, 429, 365-371.	2.0	340
25	Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals. Nature, 1971, 231, 506-511.	13.7	328
26	Keynote review: Structural biology and drug discovery. Drug Discovery Today, 2005, 10, 895-907.	3.2	311
27	X-ray analysis of glucagon and its relationship to receptor binding. Nature, 1975, 257, 751-757.	13.7	305
28	X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 4175-4179.	3.3	298
29	Environmentâ€specific amino acid substitution tables: Tertiary templates and prediction of protein folds. Protein Science, 1992, 1, 216-226.	3.1	288
30	Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 180-184.	3.3	258
31	PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science, 2015, 347, 185-188.	6.0	252
32	The active site of aspartic proteinases. FEBS Letters, 1984, 174, 96-101.	1.3	242
33	Knowledge-based protein modelling and design. FEBS Journal, 1988, 172, 513-520.	0.2	236
34	Signalling the fat controller. Nature, 1996, 384, 23-24.	13.7	236
35	Solvent-induced distortions and the curvature of $\hat{I}\pm$ -helices. Nature, 1983, 306, 281-283.	13.7	235
36	Three-dimensional structure, specificity and catalytic mechanism of renin. Nature, 1983, 304, 273-275.	13.7	229

#	Article	IF	CITATIONS
37	Crystal structure of an Xrcc4-DNA ligase IV complex. Nature Structural Biology, 2001, 8, 1015-1019.	9.7	229
38	X-ray analyses of aspartic proteinases. Journal of Molecular Biology, 1990, 214, 199-222.	2.0	224
39	Knowledge based modelling of homologous proteins, part II: rules for the conformations of substituted sidechains. Protein Engineering, Design and Selection, 1987, 1, 385-392.	1.0	222
40	Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature, 1992, 359, 33-39.	13.7	213
41	Knowledge-Based Protein Modeling. Critical Reviews in Biochemistry and Molecular Biology, 1994, 29, 1-68.	2.3	206
42	Conformational flexibility in a small globular hormone: X-ray analysis of avian pancreatic polypeptide at 0.98-Ã resolution. Biopolymers, 1983, 22, 293-304.	1.2	204
43	Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Proceedings of the Royal Society B: Biological Sciences, 1990, 241, 132-145.	1.2	203
44	Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature, 1998, 395, 244-250.	13.7	199
45	Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature, 2010, 463, 118-121.	13.7	195
46	Prediction of the stability of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Engineering, Design and Selection, 1997, 10, 7-21.	1.0	191
47	Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability. Chemistry and Biology, 2012, 19, 42-50.	6.2	191
48	Structural biology in fragment-based drug design. Current Opinion in Structural Biology, 2010, 20, 497-507.	2.6	190
49	Alignment and Searching for Common Protein Folds Using a Data Bank of Structural Templates. Journal of Molecular Biology, 1993, 231, 735-752.	2.0	174
50	A three-dimensional model of the Photosystem II reaction centre of Pisum sativum. Photosynthesis Research, 1992, 34, 287-300.	1.6	170
51	Molecular evolution and domain structure of plasminogenâ€related growth factors (HGF/SF and) Tj ETQq1 1 0.	784314 rg	BT /Qyerlock 166
52	X-ray analyses of peptide–inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature, 1992, 357, 466-472.	13.7	163
53	Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12039-12044.	3.3	163
54	Is the evolution of insulin Darwinian or due to selectively neutral mutation?. Nature, 1975, 257, 197-203.	13.7	161

#	Article	IF	CITATIONS
55	Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochemical Journal, 2001, 359, 497-505.	1.7	158
56	Structural biology and drug discovery for protein–protein interactions. Trends in Pharmacological Sciences, 2012, 33, 241-248.	4.0	155
57	DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair. Science, 2017, 355, 520-524.	6.0	155
58	CODA: A combined algorithm for predicting the structurally variable regions of protein models. Protein Science, 2001, 10, 599-612.	3.1	147
59	Atomic Interactions and Profile of Small Molecules Disrupting Protein–Protein Interfaces: the TIMBAL Database. Chemical Biology and Drug Design, 2009, 74, 457-467.	1.5	144
60	High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. Nature, 1987, 327, 349-352.	13.7	143
61	Modeling αâ€helical transmembrane domains: The calculation and use of substitution tables for lipidâ€facing residues. Protein Science, 1993, 2, 55-70.	3.1	143
62	Probing Hot Spots at Proteinâ^'Ligand Binding Sites:  A Fragment-Based Approach Using Biophysical Methods. Journal of Medicinal Chemistry, 2006, 49, 4992-5000.	2.9	140
63	Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 413-423.	1.8	140
64	Application of Fragment Growing and Fragment Linking to the Discovery of Inhibitors of <i>Mycobacterium tuberculosis</i> Pantothenate Synthetase. Angewandte Chemie - International Edition, 2009, 48, 8452-8456.	7.2	138
65	Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens βγ-crystallins. Nature, 1985, 315, 771-773.	13.7	134
66	Evolutionary trace analysis of TGF-Î ² and related growth factors: implications for site-directed mutagenesis. Protein Engineering, Design and Selection, 2000, 13, 839-847.	1.0	130
67	Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. Progress in Biophysics and Molecular Biology, 2017, 128, 3-13.	1.4	129
68	Molecular Mechanism of SSR128129E, an Extracellularly Acting, Small-Molecule, Allosteric Inhibitor of FGF Receptor Signaling. Cancer Cell, 2013, 23, 489-501.	7.7	125
69	Homology among acid proteases: comparison of crystal structures at 3A resolution of acid proteases from Rhizopus chinensis and Endothia parasitica Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 556-559.	3.3	123
70	Three-Dimensional Atomic Structure of Insulin and Its Relationship to Activity. Diabetes, 1972, 21, 492-505.	0.3	122
71	mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Scientific Reports, 2016, 6, 29575.	1.6	120
72	Flexibility and small pockets at protein–protein interfaces: New insights into druggability. Progress in Biophysics and Molecular Biology, 2015, 119, 2-9.	1.4	118

#	Article	IF	CITATIONS
73	Respiratory Flexibility in Response to Inhibition of Cytochrome <i>c</i> Oxidase in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6962-6965.	1.4	116
74	Crystal structure of the pleckstrin homology domain from dynamin. Nature Structural Biology, 1994, 1, 782-788.	9.7	115
75	Using a Fragmentâ€Based Approach To Target Protein–Protein Interactions. ChemBioChem, 2013, 14, 332-342.	1.3	115
76	Eye-lens proteins: The three-dimensional structure of β-crystallin predicted from monomeric γ-crystallin. FEBS Letters, 1981, 133, 9-16.	1.3	110
77	Computer graphics modelling of human renin. FEBS Letters, 1984, 174, 102-111.	1.3	110
78	Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nature Structural Biology, 1999, 6, 72-79.	9.7	110
79	Direct observation by Xâ€ray analysis of the tetrahedral "intermediate―of aspartic proteinases. Protein Science, 1992, 1, 322-328.	3.1	107
80	Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor. EMBO Journal, 2001, 20, 5543-5555.	3.5	107
81	Towards a Resolution of the Stoichiometry of the Fibroblast Growth Factor (FGF)–FGF Receptor–Heparin Complex. Journal of Molecular Biology, 2004, 339, 821-834.	2.0	107
82	Domain flexibility in aspartic proteinases. Proteins: Structure, Function and Bioinformatics, 1992, 12, 158-170.	1.5	106
83	High-throughput X-ray crystallography for drug discovery. Current Opinion in Pharmacology, 2004, 4, 490-496.	1.7	106
84	Crystal structure of human XLF/Cernunnos reveals unexpected differences from XRCC4 with implications for NHEJ. EMBO Journal, 2008, 27, 290-300.	3.5	106
85	Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins. Journal of Molecular Evolution, 1990, 30, 43-59.	0.8	103
86	Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: A database for modeling and prediction. Protein Science, 1996, 5, 2600-2616.	3.1	103
87	Relaxin has conformational homology with insulin. Nature, 1977, 270, 449-451.	13.7	102
88	Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biology, 2012, 2, 120071.	1.5	97
89	Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12984-12989.	3.3	97
90	Arginine-deprivation–induced oxidative damage sterilizes <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9779-9784.	3.3	97

#	Article	IF	CITATIONS
91	Catching a common fold. Protein Science, 1993, 2, 877-883.	3.1	95
92	Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. Proceedings of the United States of America, 1996, 93, 14243-14248.	3.3	93
93	Exploration of subsite binding specificity of human cathepsin D through kinetics and ruleâ€based molecular modeling. Protein Science, 1993, 2, 264-276.	3.1	91
94	Stepwise pathogenic evolution of <i>Mycobacterium abscessus</i> . Science, 2021, 372, .	6.0	91
95	Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Quarterly Reviews of Biophysics, 2012, 45, 383-426.	2.4	90
96	Utilizing graph machine learning within drug discovery and development. Briefings in Bioinformatics, 2021, 22, .	3.2	90
97	Distinguishing Structural and Functional Restraints in Evolution in Order to Identify Interaction Sites. Journal of Molecular Biology, 2004, 342, 1487-1504.	2.0	89
98	Germline Mutations in the <i>CDKN2B</i> Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. Cancer Discovery, 2015, 5, 723-729.	7.7	88
99	In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Scientific Reports, 2016, 6, 19848.	1.6	87
100	Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on â€ [~] black bone disease' in Italy. European Journal of Human Genetics, 2016, 24, 66-72.	1.4	87
101	PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research, 2020, 48, D344-D353.	6.5	87
102	Identifying Interactions that Determine Fragment Binding at Protein Hotspots. Journal of Medicinal Chemistry, 2016, 59, 4314-4325.	2.9	86
103	CREDO: A Protein–Ligand Interaction Database for Drug Discovery. Chemical Biology and Drug Design, 2009, 73, 157-167.	1.5	84
104	Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. Journal of Biological Chemistry, 2016, 291, 24377-24389.	1.6	83
105	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83
106	An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins. Protein Science, 1995, 4, 506-520.	3.1	81
107	Platinum: a database of experimentally measured effects of mutations on structurally defined protein–ligand complexes. Nucleic Acids Research, 2015, 43, D387-D391.	6.5	81
108	Comparative modelling of barley-grain aspartic proteinase: A structural rationale for observed hydrolytic specificity. FEBS Letters, 1994, 352, 131-136.	1.3	80

#	Article	IF	CITATIONS
109	Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nature Structural and Molecular Biology, 2018, 25, 482-487.	3.6	79
110	The 3-D structure of HIV-1 proteinase and the design of antiviral agents for the treatment of AIDS. Trends in Biochemical Sciences, 1990, 15, 425-430.	3.7	78
111	The threeâ€dimensional structures of mutants of porphobilinogen deaminase: Toward an understanding of the structural basis of acute intermittent porphyria. Protein Science, 1994, 3, 1644-1650.	3.1	77
112	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	1.8	77
113	Evidence That Heparin Saccharides Promote FGF2 Mitogenesis through Two Distinct Mechanisms. Journal of Biological Chemistry, 2008, 283, 13001-13008.	1.6	76
114	Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Molecular Microbiology, 1999, 31, 1653-1664.	1.2	75
115	Xâ€ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: Implications for inhibitor selectivity. Protein Science, 1999, 8, 1455-1462.	3.1	71
116	Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism. American Journal of Human Genetics, 2015, 96, 412-424.	2.6	71
117	The Crystal Structure of E. coli Pantothenate Synthetase Confirms It as a Member of the Cytidylyltransferase Superfamily. Structure, 2001, 9, 439-450.	1.6	70
118	Nerve growth factor: Structure/function relationships. Protein Science, 1994, 3, 1901-1913.	3.1	69
119	Structure of mouse 7S NGF: a complex of nerve growth factor with four binding proteins. Structure, 1997, 5, 1275-1285.	1.6	68
120	Cooperative Dimerization of Fibroblast Growth Factor 1 (FGF1) upon a Single Heparin Saccharide May Drive the Formation of 2:2:1 FGF1·FGFR2c·Heparin Ternary Complexes. Journal of Biological Chemistry, 2005, 280, 42274-42282.	1.6	68
121	A Spaetzle-like role for nerve growth factor β in vertebrate immunity to <i>Staphylococcus aureus</i> . Science, 2014, 346, 641-646.	6.0	68
122	Dimers of DNA-PK create a stage for DNA double-strand break repair. Nature Structural and Molecular Biology, 2021, 28, 13-19.	3.6	67
123	The structure of a synthetic pepsin inhibitor complexed with endothiapepsin. FEBS Journal, 1987, 169, 215-221.	0.2	66
124	Non-homologous end-joining partners in a helical dance: structural studies of XLF–XRCC4 interactions. Biochemical Society Transactions, 2011, 39, 1387-1392.	1.6	65
125	Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry. IUCrJ, 2017, 4, 308-321.	1.0	65
126	Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Molecular Cell, 2021, 81, 3400-3409.e3.	4.5	62

#	Article	IF	CITATIONS
127	Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites. Molecular Cell, 2016, 61, 434-448.	4.5	61
128	A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins: Structure, Function and Bioinformatics, 2000, 40, 135-144.	1.5	60
129	The spatial organization of non-homologous end joining: From bridging to end joining. DNA Repair, 2014, 17, 98-109.	1.3	60
130	Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning. Protein Science, 2020, 29, 247-257.	3.1	58
131	Structural bioinformatics mutation analysis reveals genotype–phenotype correlations in von Hippelâ€Lindau disease and suggests molecular mechanisms of tumorigenesis. Proteins: Structure, Function and Bioinformatics, 2009, 77, 84-96.	1.5	57
132	Metalloproteinase super–families and drug design. Nature Structural and Molecular Biology, 1994, 1, 73-75.	3.6	56
133	Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database. BMC Bioinformatics, 2011, 12, 313.	1.2	56
134	Structure of the Catalytic Region of DNA Ligase IV in Complex with an Artemis Fragment Sheds Light on Double-Strand Break Repair. Structure, 2013, 21, 672-679.	1.6	55
135	A second front against AIDS. Nature, 1989, 337, 596-597.	13.7	53
136	Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucleic Acids Research, 2012, 41, D499-D507.	6.5	53
137	Protein-Protein Interactions in Receptor Activation and Intracellular Signalling. Biological Chemistry, 2000, 381, 955-9.	1.2	51
138	Fragment-Based Approach to Targeting Inosine-5′-monophosphate Dehydrogenase (IMPDH) from <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2018, 61, 2806-2822.	2.9	51
139	BIPA: a database for protein–nucleic acid interaction in 3D structures. Bioinformatics, 2009, 25, 1559-1560.	1.8	50
140	Multimers of the fibroblast growth factor (FGF)–FGF receptor–saccharide complex are formed on long oligomers of heparin. Biochemical Journal, 2006, 393, 741-748.	1.7	48
141	Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities. Bioinformatics, 2007, 23, 1099-1105.	1.8	48
142	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
143	Structural Insights into the Role of Domain Flexibility in Human DNA Ligase IV. Structure, 2012, 20, 1212-1222.	1.6	44
144	Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Research, 2020, 48, 10953-10972.	6.5	43

#	Article	IF	CITATIONS
145	Structural genomics: an overview. Progress in Biophysics and Molecular Biology, 2000, 73, 289-295.	1.4	42
146	Cooperative Heparin-Mediated Oligomerization of Fibroblast Growth Factor-1 (FGF1) Precedes Recruitment of FGFR2 to Ternary Complexes. Biophysical Journal, 2013, 104, 1720-1730.	0.2	42
147	Analysis of HGD Gene Mutations in Patients with Alkaptonuria from the United Kingdom: Identification of Novel Mutations. JIMD Reports, 2014, 24, 3-11.	0.7	42
148	Genome3D: exploiting structure to help users understand their sequences. Nucleic Acids Research, 2015, 43, D382-D386.	6.5	42
149	A fragment merging approach towards the development of small molecule inhibitors of Mycobacterium tuberculosis EthR for use as ethionamide boosters. Organic and Biomolecular Chemistry, 2016, 14, 2318-2326.	1.5	41
150	Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae. Scientific Reports, 2018, 8, 5016.	1.6	41
151	The three-dimensional structure ofEscherichia coliporphobilinogen deaminase at 1.76-Ã resolution. , 1996, 25, 48-78.		40
152	Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target. Haematologica, 2021, 106, 1693-1704.	1.7	40
153	Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of <i>Mycobacterium tuberculosis</i> . Biochemical Journal, 2011, 436, 729-739.	1.7	39
154	Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections. Journal of Molecular Biology, 2017, 429, 2677-2693.	2.0	39
155	Structural and Functional Restraints on the Occurrence of Single Amino Acid Variations in Human Proteins. PLoS ONE, 2010, 5, e9186.	1.1	38
156	X-ray crystallographic analysis of inhibition of endothiapepsin by cyclohexyl renin inhibitors. Biochemistry, 1992, 31, 8142-8150.	1.2	37
157	Decoding the similarities and differences among mycobacterial species. PLoS Neglected Tropical Diseases, 2017, 11, e0005883.	1.3	37
158	Systematic Investigation of the Data Set Dependency of Protein Stability Predictors. Journal of Chemical Information and Modeling, 2020, 60, 4772-4784.	2.5	37
159	Smallâ€Molecule Inhibitors That Target Protein–Protein Interactions in the RAD51 Family of Recombinases. ChemMedChem, 2015, 10, 296-303.	1.6	36
160	Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discovery Today, 2017, 22, 546-554.	3.2	36
161	Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs. Nature, 2022, 601, 643-648.	13.7	36
162	CREDO: a structural interactomics database for drug discovery. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat049.	1.4	35

#	Article	IF	CITATIONS
163	Genomes, structural biology and drug discovery: combating the impacts of mutations in genetic disease and antibiotic resistance. Biochemical Society Transactions, 2017, 45, 303-311.	1.6	35
164	Characterization of Symmetric Complexes of Nerve Growth Factor and the Ectodomain of the Pan-neurotrophin Receptor, p75NTR. Journal of Biological Chemistry, 2005, 280, 33453-33460.	1.6	34
165	Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif. Progress in Biophysics and Molecular Biology, 2015, 117, 143-148.	1.4	33
166	Identification of new allosteric sites and modulators of AChE through computational and experimental tools. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1034-1047.	2.5	33
167	Exploring the binding preferences/specificity in the active site of human cathepsin E. Proteins: Structure, Function and Bioinformatics, 1995, 22, 168-181.	1.5	32
168	An iterative structure-assisted approach to sequence alignment and comparative modeling. , 1999, 37, 55-60.		32
169	A structure-guided fragment-based approach for the discovery of allosteric inhibitors targeting the lipophilic binding site of transcription factor EthR. Biochemical Journal, 2014, 458, 387-394.	1.7	32
170	Identification and Characterization of Genetic Determinants of Isoniazid and Rifampicin Resistance in Mycobacterium tuberculosis in Southern India. Scientific Reports, 2019, 9, 10283.	1.6	32
171	Development of Inhibitors against <i>Mycobacterium abscessus</i> tRNA (m ¹ G37) Methyltransferase (TrmD) Using Fragment-Based Approaches. Journal of Medicinal Chemistry, 2019, 62, 7210-7232.	2.9	32
172	SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating possible drug targets. Briefings in Bioinformatics, 2021, 22, 769-780.	3.2	31
173	Mycobacterium tuberculosis Dihydrofolate Reductase Reveals Two Conformational States and a Possible Low Affinity Mechanism to Antifolate Drugs. Structure, 2014, 22, 94-103.	1.6	30
174	Structure-guided fragment-based drug discovery at the synchrotron: screening binding sites and correlations with hotspot mapping. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180422.	1.6	30
175	Structural aspects of the functional modules in human protein kinase- \hat{Cl} ± deduced from comparative analyses. , 1996, 26, 217-235.		29
176	Insights into the structure of hepatocyte growth factor/scatter factor (HGF/SF) and implications for receptor activation. FEBS Letters, 1998, 430, 126-129.	1.3	29
177	The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage. Scientific Reports, 2018, 8, 17891.	1.6	29
178	A third fibronectin type III domain in the extracellular region of the insulin receptor family. FEBS Letters, 1998, 441, 331-336.	1.3	28
179	Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3023-3039.	1.6	28
180	Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. Progress in Biophysics and Molecular Biology, 2020, 156, 34-42.	1.4	28

#	Article	IF	CITATIONS
181	A base measure of precision for protein stability predictors: structural sensitivity. BMC Bioinformatics, 2021, 22, 88.	1.2	28
182	Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein. Open Biology, 2015, 5, 150174.	1.5	27
183	Optimization of Inhibitors of <i>Mycobacterium tuberculosis</i> Pantothenate Synthetase Based on Group Efficiency Analysis. ChemMedChem, 2016, 11, 38-42.	1.6	27
184	Fragment-Based Design of <i>Mycobacterium tuberculosis</i> InhA Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4749-4761.	2.9	27
185	Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae. Computational and Structural Biotechnology Journal, 2020, 18, 271-286.	1.9	27
186	A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death. Cell Chemical Biology, 2021, 28, 835-847.e5.	2.5	27
187	Incorporating knowledge-based biases into an energy-based side-chain modeling method: Application to comparative modeling of protein structure. Biopolymers, 2001, 59, 72-86.	1.2	26
188	Exploring the chemical space of the lysine-binding pocket of the first kringle domain of hepatocyte growth factor/scatter factor (HGF/SF) yields a new class of inhibitors of HGF/SF-MET binding. Chemical Science, 2015, 6, 6147-6157.	3.7	26
189	Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerging Microbes and Infections, 2019, 8, 109-118.	3.0	26
190	Structural analysis of DNA–PKcs: modelling of the repeat units and insights into the detailed molecular architecture. Journal of Structural Biology, 2004, 145, 295-306.	1.3	25
191	Synthesis and Structure–Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitorsÂofÂMycobacterium tuberculosis IMPDH. European Journal of Medicinal Chemistry, 2019, 174, 309-329.	2.6	25
192	Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Computational and Structural Biotechnology Journal, 2021, 19, 3938-3953.	1.9	25
193	Structural Biology of DNA Repair: Spatial Organisation of the Multicomponent Complexes of Nonhomologous End Joining. Journal of Nucleic Acids, 2010, 2010, 1-19.	0.8	24
194	Fragment-Sized EthR Inhibitors Exhibit Exceptionally Strong Ethionamide Boosting Effect in Whole-Cell <i>Mycobacterium tuberculosis</i> Assays. ACS Chemical Biology, 2017, 12, 1390-1396.	1.6	24
195	Structure and dynamics of Î ³ -secretase with presenilin 2 compared to presenilin 1. RSC Advances, 2019, 9, 20901-20916.	1.7	24
196	Protein-protein recognition via side-chain interactions. Biochemical Society Transactions, 1988, 16, 927-930.	1.6	23
197	Sequence and structure conservation in a protein core. Proteins: Structure, Function and Bioinformatics, 1998, 33, 358-366.	1.5	23
198	Cleavage Efficiency of the Novel Aspartic Protease Yapsin 1 (Yap3p) Enhanced for Substrates with Arginine Residues Flanking the P1 Site:Â Correlation with Electronegative Active-Site Pockets Predicted by Molecular Modelingâ€,‡. Biochemistry, 1998, 37, 2768-2777.	1.2	23

#	Article	IF	CITATIONS
199	A New Crystal Form of the NK1 Splice Variant of HGF/SF Demonstrates Extensive Hinge Movement and Suggests That the NK1 Dimer Originates by Domain Swapping. Journal of Molecular Biology, 2002, 319, 283-288.	2.0	22
200	Target Identification of Mycobacterium tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Frontiers in Pharmacology, 2017, 8, 681.	1.6	22
201	Protein chemical characterization of Mucor pusillus aspartic proteinase Amino acid sequence homology with the other aspartic proteinases, disulfide bond arrangement and site of carbohydrate attachment. FEBS Letters, 1988, 235, 271-274.	1.3	21
202	What Can We Learn from the Evolution of Protein-Ligand Interactions to Aid the Design of New Therapeutics?. PLoS ONE, 2012, 7, e51742.	1.1	21
203	An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Human Molecular Genetics, 2014, 23, 5976-5988.	1.4	21
204	CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	21
205	Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Progress in Biophysics and Molecular Biology, 2015, 118, 103-111.	1.4	21
206	Structural biology of multicomponent assemblies in DNA double-strand-break repair through non-homologous end joining. Current Opinion in Structural Biology, 2020, 61, 9-16.	2.6	21
207	Three Simple Properties Explain Protein Stability Change upon Mutation. Journal of Chemical Information and Modeling, 2021, 61, 1981-1988.	2.5	21
208	Structureâ€activity relationship of the peptide bindingâ€motif mediating the BRCA2:RAD51 protein–protein interaction. FEBS Letters, 2016, 590, 1094-1102.	1.3	20
209	The Molecular Organization of Human cGMP Specific Phosphodiesterase 6 (PDE6): Structural Implications of Somatic Mutations in Cancer and Retinitis Pigmentosa. Computational and Structural Biotechnology Journal, 2019, 17, 378-389.	1.9	20
210	Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Research, 2020, 48, 8099-8112.	6.5	20
211	Virtual Screening and X-ray Crystallography Identify Non-Substrate Analog Inhibitors of Flavin-Dependent Thymidylate Synthase. Journal of Medicinal Chemistry, 2016, 59, 9269-9275.	2.9	19
212	ON THE THREE-DIMENSIONAL STRUCTURE OF RELAXIN. Annals of the New York Academy of Sciences, 1982, 380, 22-33.	1.8	18
213	Analysis of interactive packing of secondary structural elements in $\hat{I}\pm/\hat{I}^2$ units in proteins. Protein Science, 1999, 8, 573-586.	3.1	18
214	Multicomponent assemblies in DNA-double-strand break repair by NHEJ. Current Opinion in Structural Biology, 2019, 55, 154-160.	2.6	18
215	The resolution revolution in X-ray diffraction, Cryo-EM and other Technologies. Progress in Biophysics and Molecular Biology, 2021, 160, 2-4.	1.4	18
216	Multidisciplinary cycles for protein engineering: Site-directed mutagenesis and X-ray structural studies of aspartic proteinases. Scandinavian Journal of Clinical and Laboratory Investigation, 1992, 52, 39-50.	0.6	17

#	Article	IF	CITATIONS
217	Structural insights into the EthR–DNA interaction using native mass spectrometry. Chemical Communications, 2017, 53, 3527-3530.	2.2	17
218	ProCarbDB: a database of carbohydrate-binding proteins. Nucleic Acids Research, 2020, 48, D368-D375.	6.5	17
219	High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO Journal, 1989, 8, 2179-88.	3.5	17
220	HARP: a database of structural impacts of systematic missense mutations in drug targets of Mycobacterium leprae. Computational and Structural Biotechnology Journal, 2020, 18, 3692-3704.	1.9	16
221	CCDC61/VFL3 Is a Paralog of SAS6 and Promotes Ciliary Functions. Structure, 2020, 28, 674-689.e11.	1.6	16
222	A fragment-based approach to assess the ligandability of ArgB, ArgC, ArgD and ArgF in the L-arginine biosynthetic pathway of Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 3491-3506.	1.9	16
223	Conformation and molecular biology of polypeptide hormones II. Glucagon. Trends in Biochemical Sciences, 1979, 4, 80-83.	3.7	15
224	Sequence analyses and comparative modeling of fly and worm fibroblast growth factor receptors indicate that the determinants for FGF and heparin binding are retained in evolution. FEBS Letters, 2001, 501, 51-58.	1.3	15
225	Understanding the structure and role of DNA-PK in NHEJ: How X-ray diffraction and cryo-EM contribute in complementary ways. Progress in Biophysics and Molecular Biology, 2019, 147, 26-32.	1.4	15
226	Hotspots API: A Python Package for the Detection of Small Molecule Binding Hotspots and Application to Structure-Based Drug Design. Journal of Chemical Information and Modeling, 2020, 60, 1911-1916.	2.5	15
227	Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA. Briefings in Bioinformatics, 2022, 23, .	3.2	15
228	Asymmetry in the Multiprotein Systems of Molecular Biology. Structural Chemistry, 2002, 13, 405-412.	1.0	13
229	Ulla: a program for calculating environment-specific amino acid substitution tables. Bioinformatics, 2009, 25, 1976-1977.	1.8	13
230	Pantothenic Acid Biosynthesis in the Parasite Toxoplasma gondii: a Target for Chemotherapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 6345-6353.	1.4	13
231	Engineering Archeal Surrogate Systems for the Development of Protein–Protein Interaction Inhibitors against Human RAD51. Journal of Molecular Biology, 2016, 428, 4589-4607.	2.0	13
232	Genome3D: integrating a collaborative data pipeline to expand the depth and breadth of consensus protein structure annotation. Nucleic Acids Research, 2020, 48, D314-D319.	6.5	13
233	Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2020, 6, 2192-2201.	1.8	13
234	SAP domain forms a flexible part of DNA aperture in Ku70/80. FEBS Journal, 2021, 288, 4382-4393.	2.2	13

#	Article	IF	CITATIONS
235	Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies against COVID-19. Life Science Alliance, 2021, 4, e202000954.	1.3	13
236	Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure, 2021, 29, 899-912.e4.	1.6	13
237	Structural landscapes of PPI interfaces. Briefings in Bioinformatics, 2022, 23, .	3.2	13
238	Interactions of protein kinase CK2 subunits. Molecular and Cellular Biochemistry, 1999, 191, 75-83.	1.4	12
239	Fragment Screening against the EthR–DNA Interaction by Native Mass Spectrometry. Angewandte Chemie - International Edition, 2017, 56, 7488-7491.	7.2	12
240	Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	12
241	Can the SARS-CoV-2 Spike Protein Bind Integrins Independent of the RGD Sequence?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 765300.	1.8	12
242	Chemistry, structure and function of insulin and related hormones. FEBS Letters, 1980, 109, 167-170.	1.3	11
243	Strategies for drug target identification in Mycobacterium leprae. Drug Discovery Today, 2021, 26, 1569-1573.	3.2	11
244	Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. International Journal of Molecular Sciences, 2022, 23, 768.	1.8	11
245	SInCRe—structural interactome computational resource for <i>Mycobacterium tuberculosis</i> . Database: the Journal of Biological Databases and Curation, 2015, 2015, bav060.	1.4	10
246	Protein-Protein Interactions: Structures and Druggability. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 141-163.	0.5	10
247	Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census. PLoS ONE, 2019, 14, e0219935.	1.1	10
248	Exploring the structural basis of conformational heterogeneity and autoinhibition of human cGMP-specific protein kinase Iα through computational modelling and molecular dynamics simulations. Computational and Structural Biotechnology Journal, 2020, 18, 1625-1638.	1.9	10
249	Deep Learning for Protein–Protein Interaction Site Prediction. Methods in Molecular Biology, 2021, 2361, 263-288.	0.4	10
250	Development of Inhibitors of SAICAR Synthetase (PurC) from <i>Mycobacterium abscessus</i> Using a Fragment-Based Approach. ACS Infectious Diseases, 2022, 8, 296-309.	1.8	10
251	In silico analysis of mutations near S1/S2 cleavage site in SARSâ€CoVâ€2 spike protein reveals increased propensity of glycosylation in Omicron strain. Journal of Medical Virology, 2022, 94, 4181-4192.	2.5	10
252	Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: Insights into structure and function. Tuberculosis, 2015, 95, 14-25.	0.8	9

#	Article	IF	CITATIONS
253	Achieving selectivity in space and time with DNA double-strand-break response and repair: molecular stages and scaffolds come with strings attached. Structural Chemistry, 2017, 28, 161-171.	1.0	9
254	The Molecular Structures and Interactions of Bovine and Human γ rystallins. Novartis Foundation Symposium, 1984, 106, 219-236.	1.2	9
255	Are There Hidden Genes in DNA/RNA Vaccines?. Frontiers in Immunology, 2022, 13, 801915.	2.2	9
256	Inhibitors of aspartic proteinases and their relevance to the design of antihypertensive agents. Biochemical Society Transactions, 1987, 15, 751-754.	1.6	8
257	SSEThread: Integrative threading of the DNA-PKcs sequence based on data from chemical cross-linking and hydrogen deuterium exchange. Progress in Biophysics and Molecular Biology, 2019, 147, 92-102.	1.4	8
258	COSMIC Cancer Gene Census 3D database: understanding the impacts of mutations on cancer targets. Briefings in Bioinformatics, 2021, 22, .	3.2	8
259	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	5.8	8
260	New Dimensions of Structural Proteomics: Exploring Chemical and Biological Space. Structure, 2007, 15, 1342-1343.	1.6	7
261	Developing Antagonists for the Met-HGF/SF Protein–Protein Interaction Using a Fragment-Based Approach. Molecular Cancer Therapeutics, 2016, 15, 3-14.	1.9	7
262	Mycobacterial OtsA Structures Unveil Substrate Preference Mechanism and Allosteric Regulation by 2-Oxoglutarate and 2-Phosphoglycerate. MBio, 2019, 10, .	1.8	7
263	Genomics, Computational Biology and Drug Discovery for Mycobacterial Infections: Fighting the Emergence of Resistance. Frontiers in Genetics, 2020, 11, 965.	1.1	7
264	Stages, scaffolds and strings in the spatial organisation of non-homologous end joining: Insights from X-ray diffraction and Cryo-EM. Progress in Biophysics and Molecular Biology, 2021, 163, 60-73.	1.4	7
265	Druggable binding sites in the multicomponent assemblies that characterise DNA double-strand-break repair through non-homologous end joining. Essays in Biochemistry, 2020, 64, 791-806.	2.1	6
266	Threonine 57 is required for the post-translational activation of <i>Escherichia coli</i> aspartate α-decarboxylase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1166-1172.	2.5	5
267	TIBLE: a web-based, freely accessible resource for small-molecule binding data for mycobacterial species. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	5
268	DNA-PKcs, Allostery, and DNA Double-Strand Break Repair. Methods in Enzymology, 2017, 592, 145-157.	0.4	5
269	Discovery of Novel Inhibitors of Uridine Diphosphate- <i>N</i> -Acetylenolpyruvylglucosamine Reductase (MurB) from <i>Pseudomonas aeruginosa</i> , an Opportunistic Infectious Agent Causing Death in Cystic Fibrosis Patients. Journal of Medicinal Chemistry, 2022, 65, 2149-2173.	2.9	5
270	Structural Characterization of Mycobacterium abscessus Phosphopantetheine Adenylyl Transferase Ligand Interactions: Implications for Fragment-Based Drug Design. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	5

#	Article	IF	CITATIONS
271	Crystallographic data deposition. Nature, 1996, 379, 202-202.	13.7	4
272	Common mechanism of thermostability in small α―and βâ€proteins studied by molecular dynamics. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1233-1250.	1.5	4
273	Structural insights into <i>Escherichia coli</i> phosphopantothenoylcysteine synthetase by native ion mobility–mass spectrometry. Biochemical Journal, 2019, 476, 3125-3139.	1.7	4
274	Structure of Mycobacterium thermoresistibile GlgE defines novel conformational states that contribute to the catalytic mechanism. Scientific Reports, 2015, 5, 17144.	1.6	3
275	Progress in biophysics and molecular biology: A brief history of the journal. Progress in Biophysics and Molecular Biology, 2018, 140, 1-4.	1.4	3
276	Computational Deorphaning of <i>Mycobacterium tuberculosis</i> Targets. , 0, , .		3
277	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>I</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	1.8	3
278	ProtCHOIR: a tool for proteome-scale generation of homo-oligomers. Briefings in Bioinformatics, 2021, 22, .	3.2	3
279	The Genome3D Consortium for Structural Annotations of Selected Model Organisms. Methods in Molecular Biology, 2020, 2165, 27-67.	0.4	3
280	In memoriam of Narayanaswamy Srinivasan (1962–2021). Proteins: Structure, Function and Bioinformatics, 2022, 90, 909-911.	1.5	3
281	Slipknot or Crystallographic Error: A Computational Analysis of the Plasmodium falciparum DHFR Structural Folds. International Journal of Molecular Sciences, 2022, 23, 1514.	1.8	3
282	Studying the role of heparin in the formation of FGF1-FGFR2 complexes using gel chromatography. International Journal of Experimental Pathology, 2004, 85, A72-A72.	0.6	2
283	XSuLT: a web server for structural annotation and representation of sequence-structure alignments. Nucleic Acids Research, 2017, 45, W381-W387.	6.5	2
284	Fragment Screening against the EthR–DNA Interaction by Native Mass Spectrometry. Angewandte Chemie, 2017, 129, 7596-7599.	1.6	2
285	Covalent inactivation of Mycobacterium thermoresistibile inosine-5â€2-monophosphate dehydrogenase (IMPDH). Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126792.	1.0	2
286	Deciphering the enzymatic target of a new family of antischistosomal agents bearing a quinazoline scaffold using complementary computational tools. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 511-523.	2.5	2
287	Structure-Guided Computational Approaches to Unravel Druggable Proteomic Landscape of Mycobacterium leprae. Frontiers in Molecular Biosciences, 2021, 8, 663301.	1.6	2
288	Comparative Analysis of Protein Threeâ€Dimensional Structures and an Approach to the Inverse Folding Problem. Novartis Foundation Symposium, 1991, 161, 28-51.	1.2	2

#	Article	IF	CITATIONS
289	The aspartic proteinases. An historical overview. Advances in Experimental Medicine and Biology, 1998, 436, 1-13.	0.8	2
290	Structure-guided, target-based drug discovery - exploiting genome information from HIV to mycobacterial infections. Postepy Biochemii, 2016, 62, 262-272.	0.5	2
291	Editorial. Progress in Biophysics and Molecular Biology, 2018, 132, 1-2.	1.4	1
292	A platform for target prediction of phenotypic screening hit molecules. Journal of Molecular Graphics and Modelling, 2020, 95, 107485.	1.3	1
293	Interdisciplinary research in physics, chemistry and biology is central to understanding biological processes. Progress in Biophysics and Molecular Biology, 2020, 156, 1-2.	1.4	1
294	A Personal History of Using Crystals and Crystallography to Understand Biology and Advanced Drug Discovery. Crystals, 2020, 10, 676.	1.0	1
295	Using a synthetic switch to regulate insulin receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111313118.	3.3	1
296	The first resolution revolution in protein structure analysis: X-ray diffraction of polypeptide conformations and globular protein folds in 1950s and 1960s. Progress in Biophysics and Molecular Biology, 2021, 167, 32-32.	1.4	1
297	Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Frontiers in Molecular Biosciences, 2022, 9, 857000.	1.6	1
298	Structural Biology – Painting the Mechanistic Landscape of Biomolecules. Journal of Molecular Biology, 2022, 434, 167566.	2.0	1
299	STRUCTURAL RELATIONSHIPS BETWEEN INSULIN, RELAXIN AND GROWTH FACTORS. Biochemical Society Transactions, 1981, 9, 65P-65P.	1.6	0
300	Over the fields. Nature, 1989, 341, 357-357.	13.7	0
301	Letter to the Editor. Journal of Biomolecular Structure and Dynamics, 1996, 13, 583-583.	2.0	0
302	Value-added Frontiers programme. Nature, 1997, 386, 755-755.	13.7	0
303	Leaving the structured world of Oxford. Nature Structural Biology, 1998, 5, 533-533.	9.7	0
304	Evolutionary Trace analysis of TGF-Î ² and related growth factors. Biochemical Society Transactions, 2000, 28, A267-A267.	1.6	0
305	New strategies for structure-guided design of AIDS antivirals. Progress in Biophysics and Molecular Biology, 2005, 88, 191-192.	1.4	0
306	Prologue: An Overview of Protein Modular Domains As Adaptors. , 2005, , 1-4.		0

18

#	Article	IF	CITATIONS
307	The prediction of protein structure and the design of novel ligands for the biotechnological, pharmaceutical and agrochemical industries. Journal of Chemical Technology and Biotechnology, 1993, 57, 282-282.	1.6	0
308	Book Review on "Molecular Biology of Assemblies and Machines―by Alasdair Steven, Wolfgang Baumeister, Louise Johnson and Richard Perham. Published by Garland Science, Taylor and Francis Group. FEBS Letters, 2017, 591, 3707-3708.	1.3	0
309	Editorial. Progress in Biophysics and Molecular Biology, 2019, 141, 1-2.	1.4	0
310	Editorial overview: Theory and simulation: demystifying GPCRs – structure, function and drug design. Current Opinion in Structural Biology, 2019, 55, vi-viii.	2.6	0
311	Editorial overview: Macromolecular assemblies. Current Opinion in Structural Biology, 2020, 61, vi-viii.	2.6	0
312	Editorial: Seventieth birthday Celebrations. Progress in Biophysics and Molecular Biology, 2021, 161, 1-2.	1.4	0
313	The renaissance in biophysics and molecular biology enabled by the interface of DNA repair and replication with cancer. Progress in Biophysics and Molecular Biology, 2021, 163, 1-4.	1.4	0
314	From revolutionary technologies for understanding genes and proteins to a focus on new therapeutics. Progress in Biophysics and Molecular Biology, 2021, 164, 1-2.	1.4	0
315	Domain Structure of Hepatocyte Growth Factor/Scatter Factor (HGF/SF). Novartis Foundation Symposium, 1997, 212, 84-104.	1.2	О