List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/369197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unwrapped and u <i>NCOR</i> ked: PPAR-Î ³ repression in atherosclerosis. European Heart Journal, 2022, 43, e32-e34.	2.2	3
2	Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 2022, 43, 518-533.	2.2	113
3	Tyrosine Kinase Inhibitor Sunitinib Delays Platelet-Induced Coagulation: Additive Effects of Aspirin. Thrombosis and Haemostasis, 2022, 122, 092-104.	3.4	11
4	A systematic review and meta-analysis of murine models of uremic cardiomyopathy. Kidney International, 2022, 101, 256-273.	5.2	13
5	The gut hormone glucose-dependent insulinotropic polypeptide is downregulated in response to myocardial injury. Cardiovascular Diabetology, 2022, 21, 18.	6.8	0
6	P2Y12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Research in Cardiology, 2022, 117, 16.	5.9	5
7	Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nature Reviews Cardiology, 2022, 19, 620-638.	13.7	40
8	Frontiers of CardioVascular Biomedicine 2022 Budapest is on in person! The excellent program proves that scientists won against Covid-19. Cardiovascular Research, 2022, , .	3.8	0
9	MicroRNA-26b Attenuates Platelet Adhesion and Aggregation in Mice. Biomedicines, 2022, 10, 983.	3.2	4
10	Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Research in Cardiology, 2022, 117, .	5.9	10
11	Sorting and magnetic-based isolation of reticulated platelets from peripheral blood. Platelets, 2021, 32, 113-119.	2.3	11
12	Inflammatory Chemokines in Atherosclerosis. Cells, 2021, 10, 226.	4.1	92
13	Tracing Endothelial CXCR4 May Pave the Way for Localized Lesional Treatment Approaches. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 837-838.	2.4	1
14	Calcium-Sensing Receptor (CaSR), Its Impact on Inflammation and the Consequences on Cardiovascular Health. International Journal of Molecular Sciences, 2021, 22, 2478.	4.1	27
15	Adipocyte-Specific ACKR3 Regulates Lipid Levels in Adipose Tissue. Biomedicines, 2021, 9, 394.	3.2	4
16	Not all myocardial infarctions are created equal: The potential of circulating microRNAs to discern coronary artery dissection. EBioMedicine, 2021, 67, 103366.	6.1	0
17	Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoeâ^'/â^' mice. Scientific Reports, 2021, 11, 10409.	3.3	4
18	Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovascular Research, 2021, 117, 2161-2174.	3.8	23

#	Article	IF	CITATIONS
19	Transcriptome signature of miRNA-26b KO mouse model suggests novel targets. BMC Genomic Data, 2021, 22, 23.	1.7	4
20	Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. Journal of Clinical Medicine, 2021, 10, 3185.	2.4	4
21	PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines, 2021, 9, 793.	3.2	27
22	Targeting the chemokine network in atherosclerosis. Atherosclerosis, 2021, 330, 95-106.	0.8	25
23	Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. Journal of Clinical Medicine, 2021, 10, 3825.	2.4	14
24	Glucocorticoid induced TNF receptor family-related protein (GITR) – A novel driver of atherosclerosis. Vascular Pharmacology, 2021, 139, 106884.	2.1	3
25	Comparison of inhibitory effects of irreversible and reversible Btk inhibitors on platelet function. EJHaem, 2021, 2, 685-699.	1.0	8
26	Prevention of vascular calcification by the endogenous chromogranin A-derived mediator that inhibits osteogenic transdifferentiation. Basic Research in Cardiology, 2021, 116, 57.	5.9	3
27	CCR6 Deficiency Increases Infarct Size after Murine Acute Myocardial Infarction. Biomedicines, 2021, 9, 1532.	3.2	1
28	Identification of Hypoxia Induced Metabolism Associated Genes in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 753727.	3.5	12
29	PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo. International Journal of Molecular Sciences, 2021, 22, 13026.	4.1	4
30	Non-activatable mutant of inhibitor of kappa B kinase α (IKKα) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis, 2020, 292, 23-30.	0.8	3
31	Interruption of the CXCL13/CXCR5 Chemokine Axis Enhances Plasma IgM Levels and Attenuates Atherosclerosis Development. Thrombosis and Haemostasis, 2020, 120, 344-347.	3.4	10
32	Autophagy unleashes noncanonical microRNA functions. Autophagy, 2020, 16, 2294-2296.	9.1	6
33	Interaction between high-density lipoproteins and inflammation: Function matters more than concentration!. Advanced Drug Delivery Reviews, 2020, 159, 94-119.	13.7	50
34	Mitochondrial Ejection for Cardiac Protection: The Macrophage Connection. Cell Metabolism, 2020, 32, 512-513.	16.2	5
35	High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression?. Biomedicines, 2020, 8, 549.	3.2	22
36	Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Frontiers in Physiology, 2020, 11, 793.	2.8	61

#	Article	IF	CITATIONS
37	Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovascular Research, 2020, 116, 2177-2184.	3.8	331
38	Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis, 2020, 120, 1629-1641.	3.4	44
39	Seeing is repairing: how imaging-based timely interference with CXCR4 could improve repair after myocardial infarction. European Heart Journal, 2020, 41, 3576-3578.	2.2	1
40	MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. International Journal of Molecular Sciences, 2020, 21, 6547.	4.1	42
41	Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Science Translational Medicine, 2020, 12, .	12.4	88
42	High-Density Lipoproteins and Apolipoprotein A1. Sub-Cellular Biochemistry, 2020, 94, 399-420.	2.4	61
43	Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient mice. Gut Microbes, 2020, 11, 1809-1823.	9.8	16
44	Chemokines and galectins form heterodimers to modulate inflammation. EMBO Reports, 2020, 21, e47852.	4.5	63
45	Letter by van der Vorst et al Regarding Article, "Anti-Inflammatory Effects of HDL (High-Density) Tj ETQq1 1 C Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e31-e32.).784314 r 2.4	gBT /Overloc 1
46	AntimiR-21 Prevents Myocardial Dysfunction in a Pig Model of Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2020, 75, 1788-1800.	2.8	82
47	Shedding of Klotho: Functional Implications in Chronic Kidney Disease and Associated Vascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 617842.	2.4	22
48	B-Cell–Specific CXCR4 Protects Against Atherosclerosis Development and Increases Plasma IgM Levels. Circulation Research, 2020, 126, 787-788.	4.5	19
49	Double bond configuration of palmitoleate is critical for atheroprotection. Molecular Metabolism, 2019, 28, 58-72.	6.5	17
50	Glycans and Glycan-Binding Proteins in Atherosclerosis. Thrombosis and Haemostasis, 2019, 119, 1265-1273.	3.4	11
51	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12
52	The new age of radiomic risk profiling: perivascular fat at the heart of the matter. European Heart Journal, 2019, 40, 3544-3546.	2.2	6
53	Transcriptome Analysis of Reticulated Platelets Reveals a Prothrombotic Profile. Thrombosis and Haemostasis, 2019, 119, 1795-1806.	3.4	54
54	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	14.3	258

#	Article	IF	CITATIONS
55	Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e30-e37.	2.4	18
56	Atypical Chemokine Receptors in Cardiovascular Disease. Thrombosis and Haemostasis, 2019, 119, 534-541.	3.4	21
57	Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. Journal of Molecular and Cellular Cardiology, 2019, 132, 154-163.	1.9	30
58	G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 531.	3.5	15
59	CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation, 2019, 139, 1338-1340.	1.6	62
60	ADAM8 in the cardiovascular system: An innocent bystander with clinical use?. Atherosclerosis, 2019, 286, 147-149.	0.8	1
61	Hematopoietic ChemR23 (Chemerin Receptor 23) Fuels Atherosclerosis by Sustaining an M1 Macrophage-Phenotype and Guidance of Plasmacytoid Dendritic Cells to Murine Lesions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 685-693.	2.4	31
62	Chemokines as Therapeutic Targets in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 583-592.	2.4	96
63	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	4.1	50
64	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	2.8	149
65	The ADAM17 Metalloproteinase Maintains Arterial Elasticity. Thrombosis and Haemostasis, 2018, 118, 210-213.	3.4	4
66	Expression and Cellular Localization of CXCR4 and CXCL12 in Human Carotid Atherosclerotic Plaques. Thrombosis and Haemostasis, 2018, 118, 195-206.	3.4	43
67	Editors' Choice in the 60th Anniversary Year of Thrombosis and Haemostasis: Past, Present and Future. Thrombosis and Haemostasis, 2018, 118, 225-227.	3.4	1
68	Metabolomic profiling of atherosclerotic plaques: towards improved cardiovascular risk stratification. European Heart Journal, 2018, 39, 2311-2313.	2.2	3
69	Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 40-48.	2.4	34
70	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
71	FP526VASCULAR CXCR4 LIMITS ATHEROSCLEROSIS BY MAINTAINING ARTERIAL INTEGRITY. Nephrology Dialysis Transplantation, 2018, 33, i216-i216.	0.7	1
72	Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2562-2575.	2.4	57

#	Article	IF	CITATIONS
73	Reporting Sex and Sex Differences in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e171-e184.	2.4	13
74	Gouty Offense in Patients With Obstructive Coronary Artery Disease Despite Stateâ€ofâ€theâ€Art Therapy. Journal of the American Heart Association, 2018, 7, e010322.	3.7	0
75	Resistin keeps its Janus face. International Journal of Cardiology, 2018, 272, 47-48.	1.7	1
76	A Happy New Year from a 60-Year-Old Journal â€~Thrombosis and Haemostasis'!. Thrombosis and Haemostasis, 2018, 118, 001-003.	3.4	1
77	Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 2018, 28, 175-182.e5.	16.2	139
78	Message in a Microbottle: Modulation of Vascular Inflammation and Atherosclerosis by Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 2018, 5, 2.	2.4	23
79	Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Scientific Reports, 2018, 8, 10647.	3.3	63
80	A Disintegrin and Metalloproteases (ADAMs) in Cardiovascular, Metabolic and Inflammatory Diseases: Aspects for Theranostic Approaches. Thrombosis and Haemostasis, 2018, 118, 1167-1175.	3.4	26
81	<i>Adam17</i> Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 247-257.	2.4	59
82	Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circulation Research, 2017, 120, 736-743.	4.5	348
83	Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1022-1028.	2.4	46
84	Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages. Circulation, 2017, 136, 83-97.	1.6	35
85	Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity. Circulation, 2017, 136, 388-403.	1.6	128
86	Disease- or Storage-Associated Structural Modifications Are Unlikely to Explain HDL Pro-inflammatory Effects on Macrophages. Cell Metabolism, 2017, 26, 4-5.	16.2	11
87	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	12.4	121
88	Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis. Scientific Reports, 2017, 7, 45263.	3.3	44
89	HDL and macrophages: explaining the clinical failures and advancing HDL-based therapeutics in cardiovascular diseases?. Expert Review of Cardiovascular Therapy, 2017, 15, 343-344.	1.5	2
90	Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 312-315.	2.4	28

#	Article	IF	CITATIONS
91	Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression. Scientific Reports, 2017, 7, 11670.	3.3	13
92	Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2087-2101.	2.4	154
93	High-Density Lipoproteins Exert Pro-inflammatory Effects on Macrophages via Passive Cholesterol Depletion and PKC-NF-κB/STAT1-IRF1 Signaling. Cell Metabolism, 2017, 25, 197-207.	16.2	80
94	Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer ⁶⁸ Ga-Pentixafor for PET. Journal of Nuclear Medicine, 2017, 58, 499-506.	5.0	94
95	Therapeutic strategies for atherosclerosis and atherothrombosis: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1258-1264.	3.4	40
96	Contrasting effects of myeloid and endothelial ADAM17 on atherosclerosis development. Thrombosis and Haemostasis, 2017, 117, 644-646.	3.4	17
97	Thrombosis and Haemostasis: Past, present and future. Thrombosis and Haemostasis, 2017, 117, 1217-1218.	3.4	5
98	Role of the CX3C chemokine receptor CX3CR1 in the pathogenesis of atherosclerosis after aortic transplantation. PLoS ONE, 2017, 12, e0170644.	2.5	10
99	Functional ex-vivo Imaging of Arterial Cellular Recruitment and Lipid Extravasation. Bio-protocol, 2017, 7, .	0.4	6
100	Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. ELife, 2016, 5, .	6.0	98
101	Artery Tertiary Lymphoid Organs: Powerhouses of Atherosclerosis Immunity. Frontiers in Immunology, 2016, 7, 387.	4.8	76
102	Zooming in on microRNAs for refining cardiovascular risk prediction in secondary prevention. European Heart Journal, 2016, 38, ehw259.	2.2	22
103	The timeâ€ofâ€day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Molecular Medicine, 2016, 8, 937-948.	6.9	115
104	Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation, 2016, 134, 1176-1188.	1.6	54
105	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
106	Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circulation Research, 2016, 119, 1030-1038.	4.5	180
107	Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4 ⁺ T-Cell Responses—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1748-1752.	2.4	28
108	Probing Functional Heteromeric Chemokine Protein–Protein Interactions through Conformationâ€Assisted Oxime Ligation. Angewandte Chemie - International Edition, 2016, 55, 14963-14966.	13.8	16

#	Article	IF	CITATIONS
109	Complying With the National Institutes of Health Guidelines and Principles for Rigor and Reproducibility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1303-1304.	2.4	12
110	Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged <i>ApoE</i> ^{<i>â~'/â~'</i>} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1174-1185.	2.4	85
111	Structure-Based Design of Peptidic Inhibitors of the Interaction between CC Chemokine Ligand 5 (CCL5) and Human Neutrophil Peptides 1 (HNP1). Journal of Medicinal Chemistry, 2016, 59, 4289-4301.	6.4	28
112	Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 482-490.	2.4	90
113	MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Frontiers in Immunology, 2015, 6, 373.	4.8	42
114	Pharmacological Treatment with Annexin A1 Reduces Atherosclerotic Plaque Burden in LDLR-/- Mice on Western Type Diet. PLoS ONE, 2015, 10, e0130484.	2.5	54
115	Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 2015, 36, 2635-2642.	2.2	174
116	Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Science Translational Medicine, 2015, 7, 317ra196.	12.4	90
117	Deficiency of the Stroke Relevant <i>HDAC9</i> Gene Attenuates Atherosclerosis in Accord With Allele-Specific Effects at 7p21.1. Stroke, 2015, 46, 197-202.	2.0	73
118	Annexin A1 Counteracts Chemokine-Induced Arterial Myeloid Cell Recruitment. Circulation Research, 2015, 116, 827-835.	4.5	124
119	MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAPâ€70 signaling, and lymphocyte chemotaxis. FASEB Journal, 2015, 29, 4497-4511.	0.5	129
120	Myeloid A Disintegrin and Metalloproteinase Domain 10 Deficiency Modulates Atherosclerotic Plaque Composition by Shifting the Balance from Inflammation toward Fibrosis. American Journal of Pathology, 2015, 185, 1145-1155.	3.8	46
121	MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 361-374.	13.7	101
122	Chemokines and their receptors in Atherosclerosis. Journal of Molecular Medicine, 2015, 93, 963-971.	3.9	71
123	Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e52-6.	2.4	36
124	Endothelial Hypoxia-Inducible Factor-1α Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a. Hypertension, 2015, 66, 1220-1226.	2.7	128
125	Noninvasive Molecular Ultrasound Monitoring of Vessel Healing After Intravascular Surgical Procedures in a Preclinical Setup. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1366-1373.	2.4	25
126	Neutrophils in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 288-295.	2.4	166

#	Article	IF	CITATIONS
127	The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Frontiers in Physiology, 2014, 5, 212.	2.8	208
128	Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. Journal of Cellular and Molecular Medicine, 2014, 18, 790-800.	3.6	36
129	AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE ^{â^'/â^'} mice. Journal of Cellular and Molecular Medicine, 2014, 18, 2117-2124.	3.6	26
130	Deficiency of Endothelial <i>Cxcr4</i> Reduces Reendothelialization and Enhances Neointimal Hyperplasia After Vascular Injury in Atherosclerosis-Prone Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1209-1220.	2.4	57
131	Activation of CXCR7 Limits Atherosclerosis and Improves Hyperlipidemia by Increasing Cholesterol Uptake in Adipose Tissue. Circulation, 2014, 129, 1244-1253.	1.6	61
132	Reprogramming macrophages to an antiâ€inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB Journal, 2014, 28, 288-299.	0.5	69
133	Does a pressure increase translate into an adjacent compartment? A cadaver study. Open Medicine (Poland), 2014, 9, 235-239.	1.3	0
134	Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 742-750.	2.4	145
135	High Expression of C5L2 Correlates with High Proinflammatory Cytokine Expression in Advanced Human Atherosclerotic Plaques. American Journal of Pathology, 2014, 184, 2123-2133.	3.8	26
136	Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood, 2014, 123, 4077-4088.	1.4	54
137	Highâ€density lipoproteins suppress chemokine expression and proliferation in human vascular smooth muscle cells. FASEB Journal, 2013, 27, 1413-1425.	0.5	44
138	Compartmentalized Protective and Detrimental Effects of Endogenous Macrophage Migration-Inhibitory Factor Mediated by CXCR2 in a Mouse Model of Myocardial Ischemia/Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2180-2186.	2.4	54
139	CXCL12 Promotes the Stabilization of Atherosclerotic Lesions Mediated by Smooth Muscle Progenitor Cells in <i>Apoe</i> -Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 679-686.	2.4	75
140	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	6.9	169
141	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
142	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	2.4	76
143	Touch of Chemokines. Frontiers in Immunology, 2012, 3, 175.	4.8	103
144	microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thrombosis and Haemostasis, 2012, 107, 619-625.	3.4	98

#	Article	IF	CITATIONS
145	A disintegrin and metalloproteases: Molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis, 2012, 224, 302-308.	0.8	47
146	Hematopoietic miR155 Deficiency Enhances Atherosclerosis and Decreases Plaque Stability in Hyperlipidemic Mice. PLoS ONE, 2012, 7, e35877.	2.5	129
147	Lipoprotein-Derived Lysophosphatidic Acid Promotes Atherosclerosis by Releasing CXCL1Âfrom the Endothelium. Cell Metabolism, 2011, 13, 592-600.	16.2	176
148	Atherosclerosis: current pathogenesis and therapeutic options. Nature Medicine, 2011, 17, 1410-1422.	30.7	1,765
149	Chemokines: established and novel targets in atherosclerosis. EMBO Molecular Medicine, 2011, 3, 713-725.	6.9	93
150	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	8.2	223
151	Suboptimal release of CD34+/CD144+ cells in atherosclerotic patients in response to ischemia: role of plasmatic TGFâ€B. FASEB Journal, 2011, 25, lb355.	0.5	0
152	Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 2010, 122, 1837-1845.	1.6	571
153	High-Density Lipoproteins Suppress Chemokines and Chemokine Receptors In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1773-1778.	2.4	117
154	Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. Journal of Molecular and Cellular Cardiology, 2010, 48, 789-798.	1.9	87
155	CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood, 2009, 113, 963-972.	1.4	396
156	Macrophage Migration Inhibitory Factor: A Noncanonical Chemokine Important in Atherosclerosis. Trends in Cardiovascular Medicine, 2009, 19, 76-86.	4.9	65
157	Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine, 2009, 15, 97-103.	30.7	404
158	The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nature Reviews Immunology, 2008, 8, 802-815.	22.7	698
159	Chemokines in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1897-1908.	2.4	345
160	Protective Role of CXC Receptor 4/CXC Ligand 12 Unveils the Importance of Neutrophils in Atherosclerosis. Circulation Research, 2008, 102, 209-217.	4.5	363
161	CXCR6 Promotes Atherosclerosis by Supporting T-Cell Homing, Interferon-Î ³ Production, and Macrophage Accumulation in the Aortic Wall. Circulation, 2007, 116, 1801-1811.	1.6	114
162	Ccr5 But Not Ccr1 Deficiency Reduces Development of Diet-Induced Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 373-379.	2.4	254

#	Article	IF	CITATIONS
163	Regulated Shedding of Transmembrane Chemokines by the Disintegrin and Metalloproteinase 10 Facilitates Detachment of Adherent Leukocytes. Journal of Immunology, 2007, 178, 8064-8072.	0.8	151
164	Transmembrane chemokines: Versatile â€~special agents' in vascular inflammation. Thrombosis and Haemostasis, 2007, 97, 694-703.	3.4	156
165	MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 2007, 13, 587-596.	30.7	1,065
166	The role of junctional adhesion molecules in vascular inflammation. Nature Reviews Immunology, 2007, 7, 467-477.	22.7	431
167	Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 715-721.	6.4	52
168	Transmembrane chemokines: versatile 'special agents' in vascular inflammation. Thrombosis and Haemostasis, 2007, 97, 694-703.	3.4	55
169	Reduction of the aortic inflammatory response in spontaneous atherosclerosis by blockade of macrophage migration inhibitory factor (MIF). Atherosclerosis, 2006, 184, 28-38.	0.8	107
170	Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice: involvement of IL-10. Blood, 2006, 107, 4240-4243.	1.4	126
171	Effects of pioglitazone on isolated human endothelial progenitor cells. FASEB Journal, 2006, 20, A668.	0.5	0
172	Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood, 2005, 105, 924-930.	1.4	338
173	SDF-1α/CXCR4 Axis Is Instrumental in Neointimal Hyperplasia and Recruitment of Smooth Muscle Progenitor Cells. Circulation Research, 2005, 96, 784-791.	4.5	345
174	Platelets and Chemokines in Atherosclerosis. Circulation Research, 2005, 96, 612-616.	4.5	246
175	Stabilization of Atherosclerotic Plaques by Blockade of Macrophage Migration Inhibitory Factor After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2004, 109, 380-385.	1.6	162
176	Crucial Role of the CCL2/CCR2 Axis in Neointimal Hyperplasia After Arterial Injury in Hyperlipidemic Mice Involves Early Monocyte Recruitment and CCL2 Presentation on Platelets. Circulation Research, 2004, 95, 1125-1133.	4.5	125
177	Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Medicine, 2003, 9, 61-67.	30.7	931
178	Crucial Role of Stromal Cell–Derived Factor-1α in Neointima Formation After Vascular Injury in Apolipoprotein E–Deficient Mice. Circulation, 2003, 108, 2491-2497.	1.6	190
179	Deposition of Platelet RANTES Triggering Monocyte Recruitment Requires P-Selectin and Is Involved in Neointima Formation After Arterial Injury. Circulation, 2002, 106, 1523-1529.	1.6	332
180	α-Tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochemical Journal, 2002, 362, 709-715.	3.7	107

#	Article	IF	CITATIONS
181	Combined modulation of the mesangial machinery for monocyte recruitment by inhibition of NF-κB. American Journal of Physiology - Cell Physiology, 2001, 281, C1881-C1888.	4.6	18
182	RANTES Deposition by Platelets Triggers Monocyte Arrest on Inflamed and Atherosclerotic Endothelium. Circulation, 2001, 103, 1772-1777.	1.6	536
183	Induction of cancer cell apoptosis by αâ€ŧocopheryl succinate: molecular pathways and structural requirements. FASEB Journal, 2001, 15, 403-415.	0.5	272
184	The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. Journal of Clinical Investigation, 2001, 108, 1307-1314.	8.2	239
185	Differential chemokine receptor expression and function in human monocyte subpopulations. Journal of Leukocyte Biology, 2000, 67, 699-704.	3.3	317
186	Metâ€RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB Journal, 1999, 13, 1371-1383.	0.5	231
187	Papilloma of the Larynx. Acta Oto-Laryngologica, 1956, 46, 499-516.	0.9	66