Marco Mariotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3691063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy, 2022, 12, 418.	3.0	4
2	Cover Crop Introduction in a Mediterranean Maize Cropping System. Effects on Soil Variables and Yield. Agronomy, 2021, 11, 549.	3.0	4
3	Durum Wheat Yield and N Uptake as Affected by N Source, Timing, and Rate in Two Mediterranean Environments. Agronomy, 2021, 11, 1299.	3.0	11
4	The Importance of Root Interactions in Field Bean/Triticale Intercrops. Plants, 2020, 9, 1474.	3.5	9
5	Use of Fresh Scotta Whey as an Additive for Alfalfa Silage. Agronomy, 2020, 10, 365.	3.0	14
6	Rutin content in the forage and grain of common buckwheat (Fagopyrum esculentum) as affected by sowing time and irrigation in a Mediterranean environment. Crop and Pasture Science, 2020, 71, 171.	1.5	1
7	NITROGEN FIXATION OF GRAIN LEGUMES DIFFERS IN RESPONSE TO NITROGEN FERTILISATION. Experimental Agriculture, 2018, 54, 66-82.	0.9	38
8	Field bean for forage and grain in short-season rainfed Mediterranean conditions. Italian Journal of Agronomy, 2018, 13, 208-215.	1.0	9
9	Rutin and quercetin content in the forage of common buckwheat as affected by maturity and conservation method. Grassland Science, 2017, 63, 169-176.	1.1	2
10	Effect of preceding crop on the agronomic and economic performance of durum wheat in the transition from conventional to reduced tillage. European Journal of Agronomy, 2017, 82, 125-133.	4.1	17
11	Biosolids differently affect seed yield, nodule growth, nodule-specific activity, and symbiotic nitrogen fixation of field bean. Crop and Pasture Science, 2017, 68, 735.	1.5	5
12	Agronomic and nutritional characteristics of three buckwheat cultivars under organic farming in three environments of the Garfagnana mountain district. Italian Journal of Agronomy, 2016, 11, 188-194.	1.0	6
13	Forage and grain yield of common buckwheat in Mediterranean conditions: response to sowing time and irrigation. Crop and Pasture Science, 2016, 67, 1000.	1.5	8
14	A growth scale for the phasic development of common buckwheat. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 215-228.	0.6	5
15	Nitrogen leaching and residual effect of barley/field bean intercropping. Plant, Soil and Environment, 2015, 61, 60-65.	2.2	30
16	Nitrate leaching from forage legume crops and residual effect on Italian ryegrass. Journal of Agricultural Economics, 2015, , .	0.3	4
17	The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	12
18	As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy. European Journal of Agronomy, 2013, 44, 38-45.	4.1	76

Marco Mariotti

#	Article	IF	CITATIONS
19	Effects of nitrogen splitting and source on durum wheat. Cereal Research Communications, 2013, 41, 338-347.	1.6	8
20	Optimizing forage yield of durum wheat/field bean intercropping through N fertilization and row ratio. Grass and Forage Science, 2012, 67, 243-254.	2.9	20
21	Management of sulphur fertiliser to improve durum wheat production and minimise S leaching. European Journal of Agronomy, 2012, 38, 74-82.	4.1	43
22	Durum wheat grain yield and quality as affected by S rate under Mediterranean conditions. European Journal of Agronomy, 2011, 35, 63-70.	4.1	41
23	Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen and temperature during grain filling. Cereal Research Communications, 2010, 38, 294-303.	1.6	13
24	Coordination between plant and apex development in Hordeum vulgare ssp. distichum. Comptes Rendus - Biologies, 2010, 333, 454-460.	0.2	10
25	Above―and belowâ€ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass and Forage Science, 2009, 64, 401-412.	2.9	79
26	Sowing date affect spikelet number and grain yield of durum wheat. Cereal Research Communications, 2009, 37, 469-478.	1.6	18
27	Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 2008, 28, 138-147.	4.1	174
28	Nitrogen and phosphorus accumulation and remobilization of durum wheat as affected by soil gravel content. Cereal Research Communications, 2008, 36, 157-166.	1.6	7
29	Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Genotype and Environment. Italian Journal of Agronomy, 2007, 2, 303.	1.0	14
30	Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy, 2007, 26, 179-186.	4.1	149
31	Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006, 25, 309-318.	4.1	199
32	Response of miscanthus to toxic cadmium applications during the period of maximum growth. Environmental and Experimental Botany, 2006, 55, 29-40.	4.2	43
33	Dry matter accumulation and remobilization of durum wheat as affected by soil gravel content. Cereal Research Communications, 2006, 34, 1299-1306.	1.6	19
34	Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 2004, 21, 93-103.	4.1	64
35	Low cadmium application increase miscanthus growth and cadmium translocation. Environmental and Experimental Botany, 2004, 52, 89-100.	4.2	85
36	Climate change in Italy indicated by agrometeorological indices over 122 years. Agricultural and Forest Meteorology, 2002, 111, 13-27.	4.8	177

Marco Mariotti

#	Article	IF	CITATIONS
37	Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 1999, 63, 3-11.	5.1	166
38	Spectral Properties of Leaves Deficient in Iron, Sulfur, Magnesium, and Manganese. Agronomy Journal, 1996, 88, 937-943.	1.8	136
39	Spectral properties of iron-deficient corn and sunflower leaves. Remote Sensing of Environment, 1996, 58, 282-288.	11.0	84
40	Effect of Temperature and Phosphorus Fertilization on Phosphorus and Nitrogen Uptake by Sorhgum. Crop Science, 1996, 36, 348-354.	1.8	13
41	Changes in spectral properties of ageing and senescing maize and sunflower leaves. Physiologia Plantarum, 1994, 91, 334-338.	5.2	39