David Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690988/publications.pdf

Version: 2024-02-01

ΠΑΥΙΟ ΜΑΡΟ

#	Article	IF	CITATIONS
1	A patch-dynamics approach to savanna dynamics and woody plant encroachment – Insights from an ar arid savanna. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 7, 229-242.	2.7	191
2	Walter's two-layer hypothesis revisited: back to the roots!. Oecologia, 2013, 172, 617-630.	2.0	182
3	Large carnivores make savanna tree communities less thorny. Science, 2014, 346, 346-349.	12.6	176
4	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	7.8	140
5	Multiâ€scale patterns and bush encroachment in an arid savanna with a shallow soil layer. Journal of Vegetation Science, 2005, 16, 311-320.	2.2	123
6	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
7	<i>Acacia</i> trees as keystone species in Negev desert ecosystems. Journal of Vegetation Science, 2002, 13, 227-236.	2.2	107
8	Chemical and mechanical defense against herbivory in two sympatric species of desertAcacia. Journal of Vegetation Science, 1997, 8, 717-726.	2.2	101
9	Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia, 2002, 133, 131-138.	2.0	97
10	Evolution of Plant Defenses in Nonindigenous Environments. Annual Review of Entomology, 2010, 55, 439-459.	11.8	96
11	Anthropogenic causes of high mortality and low recruitment in three Acacia tree taxa in the Negev desert, Israel. Biodiversity and Conservation, 1997, 6, 877-893.	2.6	84
12	Biomass partitioning and root morphology of savanna trees across a water gradient. Journal of Ecology, 2012, 100, 1113-1121.	4.0	80
13	Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biological Journal of the Linnean Society, 2002, 77, 479-490.	1.6	70
14	Gazelle Herbivory and Interpopulation Differences in Calcium Oxalate Content of Leaves of a Desert Lily. Journal of Chemical Ecology, 1997, 23, 333-346.	1.8	67
15	What are the effects of substrate and grass removal on recruitment of Acacia mellifera seedlings in a semi-arid environment?. Plant Ecology, 2011, 212, 245-250.	1.6	66
16	A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range and Forage Science, 2014, 31, 107-121.	1.4	65
17	Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma, 2018, 310, 153-162.	5.1	65
18	Overlap in soil water sources of savanna woody seedlings and grasses. Ecohydrology, 2013, 6, 464-473.	2.4	58

#	Article	IF	CITATIONS
19	African elephants use plant odours to make foraging decisions across multiple spatial scales. Animal Behaviour, 2018, 141, 17-27.	1.9	58
20	Forest or the trees: At what scale do elephants make foraging decisions?. Acta Oecologica, 2012, 42, 3-10.	1.1	54
21	Effects of large mammalian herbivores and ant symbionts on condensed tannins of Acacia drepanolobium in Kenya. Journal of Chemical Ecology, 2002, 28, 921-937.	1.8	53
22	Species migrations and range shifts: A synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 62-77.	2.7	53
23	Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana ?. Journal of Vegetation Science, 2000, 11, 473-484.	2.2	51
24	Grass competition is more important than seed ingestion by livestock for Acacia recruitment in South Africa. Plant Ecology, 2012, 213, 899-908.	1.6	50
25	The effects of grazing, fire, nitrogen and water availability on nutritional quality of grass in semi-arid savanna, South Africa. Journal of Arid Environments, 2010, 74, 1294-1301.	2.4	47
26	Soil respiration declines with increasing nitrogen fertilization and is not related to productivity in long-term grassland experiments. Soil Biology and Biochemistry, 2017, 115, 415-422.	8.8	46
27	Trait-environment relations for dominant grasses in South African mesic grassland support a general leaf economic model. Journal of Vegetation Science, 2011, 22, 528-540.	2.2	44
28	Soil Organic Carbon Increases in Semi-Arid Regions while it Decreases in Humid Regions Due to Woody-Plant Encroachment of Grasslands in South Africa. Scientific Reports, 2018, 8, 15506.	3.3	43
29	Responding to a three-pronged attack: desert lilies subject to herbivory by dorcas gazelles. Plant Ecology, 2000, 148, 127-138.	1.6	41
30	Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage. Annals of Botany, 2013, 112, 575-587.	2.9	41
31	Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecology, 2012, 213, 1609-1619.	1.6	40
32	Host specificity in parasitic plantsâ \in "perspectives from mistletoes. AoB PLANTS, 2016, 8, .	2.3	38
33	Shade, nutrients, and grass competition are important for tree sapling establishment in a humid savanna. Ecosphere, 2013, 4, 1-27.	2.2	33
34	Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species. Oikos, 2016, 125, 126-136.	2.7	32
35	Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. Journal of Ecology, 2002, 90, 472-479.	4.0	31
36	SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches. Ecological Modelling, 2007, 209, 377-391.	2.5	31

#	Article	IF	CITATIONS
37	A resource ratio model of the effects of changes in CO2 on woody plant invasion. Plant Ecology, 2010, 209, 147-152.	1.6	31
38	Title is missing!. Plant Ecology, 2003, 168, 297-307.	1.6	29
39	Directed dispersal of mistletoe (Plicosepalus acaciae) by Yellow-vented Bulbuls (Pycnonotus) Tj ETQq1 1 0.784	-314 _{[g} BT /0	Overlock 10 T
40	ADAPTATION AND CONSTRAINT IN THE EVOLUTION OF THE PHYSIOLOGY AND BEHAVIOR OF THE NAMIB DESERT TENEBRIONID BEETLE GENUS <i>ONYMACRIS</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 1231-1240.	2.3	28
41	Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants. Journal of Vegetation Science, 2011, 22, 1038-1048.	2.2	27
42	Why we <i>still</i> need permanent plots for vegetation science. Journal of Vegetation Science, 2020, 31, 679-685.	2.2	27
43	Salivary tannin-binding proteins: A foraging advantage for goats?. Livestock Science, 2020, 234, 103974.	1.6	27
44	Nitrogen fertilisation reduces grass-induced N2 fixation of tree seedlings from semi-arid savannas. Plant and Soil, 2013, 365, 307-320.	3.7	26
45	Positive versus negative environmental impacts of tree encroachment in South Africa. Acta Oecologica, 2013, 53, 1-10.	1.1	26
46	Leaf compensatory growth as a tolerance strategy to resist herbivory in Pancratium sickenbergeri. Plant Ecology, 2008, 198, 19-26.	1.6	25
47	Fire and herbivory are not substitutable: evidence from regrowth patterns and changes in physical and chemical defences in <scp><i>A</i></scp> <i>cacia</i> seedlings. Journal of Vegetation Science, 2012, 23, 13-23.	2.2	24
48	Incorporating secondary metabolites, tannin-binding proteins, and diet breadth into carrying-capacity models for African elephants. Ecological Modelling, 2016, 332, 8-18.	2.5	24
49	The Effects of Seed Ingestion by Livestock, Dung Fertilization, Trampling, Grass Competition and Fire on Seedling Establishment of Two Woody Plant Species. PLoS ONE, 2015, 10, e0117788.	2.5	24
50	The effects of water availability on the life history of the desert snail,Trochoidea seetzeni. Oecologia, 1992, 90, 572-580.	2.0	23
51	Spatio-Temporal Rainfall Variation and Stock Management in Arid Namibia. Journal of Range Management, 2004, 57, 130.	0.3	23
52	The role of volatile plant secondary metabolites as preâ€ingestive cues and potential toxins dictating diet selection by African elephants. Oikos, 2020, 129, 24-34.	2.7	22
53	An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS ONE, 2017, 12, e0177208.	2.5	22
54	Multi-scale patterns and bush encroachment in an arid savanna with a shallow soil layer. Journal of Vegetation Science, 2005, 16, 311.	2.2	22

David Ward

#	Article	IF	CITATIONS
55	Population differentiation in a purported ring species, Acacia karroo (Mimosoideae). Biological Journal of the Linnean Society, 2011, 104, 748-755.	1.6	20
56	Fire and nutrient gradient effects on the sapling ecology of four Acacia species in the presence of grass competition. Plant Ecology, 2012, 213, 1793-1802.	1.6	20
57	Soil microbial biomass and functional diversity in shrub-encroached grasslands along a precipitation gradient. Pedobiologia, 2017, 63, 37-45.	1.2	20
58	Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu War of 1879: local or global drivers?. African Journal of Range and Forage Science, 2014, 31, 89-105.	1.4	18
59	Herbivory effects on saplings are influenced by nutrients and grass competition in a humid South African savanna. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 11-20.	2.7	18
60	Competitive effect and response of savanna tree seedlings: comparison of survival, growth and associated functional traits. Journal of Vegetation Science, 2014, 25, 226-234.	2.2	17
61	Evolution and ecology meet molecular genetics: adaptive phenotypic plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient. Annals of Botany, 2012, 109, 247-255.	2.9	15
62	Are there common assembly rules for different grasslands? Comparisons of longâ€ŧerm data from a subtropical grassland with temperate grasslands. Journal of Vegetation Science, 2020, 31, 780-791.	2.2	15
63	Historical Landâ€use and Vegetation Change in Northern Kwazuluâ€Natal, South Africa. Land Degradation and Development, 2016, 27, 1691-1699.	3.9	14
64	Clipping frequency but not nutrients affect the architecture and non-structural carbohydrates of a browsing lawn. Plant Ecology, 2016, 217, 21-29.	1.6	14
65	Soil fertility on granite and sedimentary soils is associated with seasonal differences in foraging by elephants. Plant and Soil, 2017, 413, 73-81.	3.7	14
66	Reciprocal transplant experiment suggests host specificity of the mistletoe <i>Agelanthus natalitius</i> in South Africa. Journal of Tropical Ecology, 2014, 30, 153-163.	1.1	13
67	Linking a spatially-explicit model of acacias to GIS and remotely-sensed data. Folia Geobotanica, 2000, 35, 211-230.	0.9	12
68	Are there phylogenetic differences in salivary tanninâ€binding proteins between browsers and grazers, and ruminants and hindgut fermenters?. Ecology and Evolution, 2020, 10, 10426-10439.	1.9	12
69	Soil clay influences <i>Acacia</i> encroachment in a South African grassland. Ecohydrology, 2014, 7, 1474-1484.	2.4	11
70	Effects of grazing by reâ€introduced Equus hemionus on the vegetation in a Negev desert erosion cirque. Journal of Vegetation Science, 1999, 10, 579-586.	2.2	10
71	Herbivoreâ€induced defenses are not under phylogenetic constraints in the genus <i>Quercus</i> (oak): Phylogenetic patterns of growth, defense, and storage. Ecology and Evolution, 2021, 11, 5187-5203. 	1.9	10
72	Direct and indirect effects of termites on savanna tree-seedling growth. Plant Ecology, 2013, 214, 811-819.	1.6	9

#	Article	IF	CITATIONS
73	Fire can suppress the development of macrophyllous thickets. African Journal of Range and Forage Science, 2014, 31, 147-160.	1.4	9
74	Grass competition is more important than fire for suppressing encroachment of Acacia sieberiana seedlings. Plant Ecology, 2021, 222, 149-158.	1.6	9
75	Do polyandrous shorebirds trade off egg size with egg number?. Journal of Avian Biology, 2000, 31, 473-478.	1.2	8
76	Longâ€ŧerm effects of herbivory on plant diversity and functional types in arid ecosystems. , 2006, , 142-169.		8
77	Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing, 2014, 35, 904-926.	2.9	8
78	Spatial patterns of encroaching shrub species under different grazing regimes in a semi-arid savanna, eastern Karoo, South Africa. African Journal of Range and Forage Science, 2016, 33, 77-89.	1.4	8
79	Protein:Carbohydrate Ratios in the Diet of Gypsy Moth Lymantria dispar Affect its Ability to Tolerate Tannins. Journal of Chemical Ecology, 2020, 46, 299-307.	1.8	8
80	Differentiated plant defense strategies: Herbivore community dynamics affect plant–herbivore interactions. Ecosphere, 2022, 13, .	2.2	8
81	Aboveground herbivory causes belowground changes in twelve oak <i>Quercus</i> species: a phylogenetic analysis of root biomass and nonâ€structural carbohydrate storage. Oikos, 2021, 130, 1797-1812.	2.7	7
82	Shade is the most important factor limiting growth of a woody range expander. PLoS ONE, 2020, 15, e0242003.	2.5	6
83	Soil properties and climate mediate the effects of biotic interactions on the performance of a woody range expander. Ecosphere, 2018, 9, e02186.	2.2	5
84	The effects of herbivory and resource variability on the production of a second inflorescence by the desert lily, Pancratium sickenbergeri. Plant Ecology, 2006, 186, 47-55.	1.6	4
85	Soil organic carbon and nitrogen in soil physical fractions in woody encroached grassland in South African savannas. Soil Research, 2021, 59, 595-608.	1.1	4
86	Shade affects fine-root morphology in range-encroaching eastern redcedars (Juniperus virginiana) more than competition, soil fertility and pH. Pedobiologia, 2021, 84, 150708.	1.2	4
87	Differential effects of nutrient addition and woody plant encroachment on grassland soil, litter and plant dynamics across a precipitation gradient. Pedobiologia, 2021, 85-86, 150726.	1.2	4
88	Reinvasion of Native Invasive Trees After a Tree-Thinning Experiment in an African Savanna. Rangeland Ecology and Management, 2022, 81, 69-77.	2.3	4
89	Megaherbivore browsers vs. tannins: is being big enough?. Oecologia, 2020, 194, 383-390.	2.0	3
90	Does a reciprocal transplant experiment of neighboring Vachellia karroo populations demonstrate local adaptation?. South African Journal of Botany, 2022, 144, 316-324.	2,5	2

#	Article	IF	CITATIONS
91	Changes in white oak (<i>Quercus alba</i>) phytochemistry in response to periodical cicadas: Before, during, and after an emergence. Ecology and Evolution, 2022, 12, e8839.	1.9	2
92	The effects of tree canopies on invasive <i>Lantana camara</i> : a follow-up study 18 years later. African Journal of Range and Forage Science, 2021, 38, 291-295.	1.4	1
93	Experimental drought suppresses grass productivity and passive warming promotes tree sapling performance: Insights from African savanna species. Acta Oecologica, 2022, 114, 103813.	1.1	1
94	The value of information to foraging Calliope Hummingbirds. Ethology Ecology and Evolution, 0, , 1-13.	1.4	0