
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690983/publications.pdf

Version: 2024-02-01

YVAN TODDENTE

#	Article	IF	CITATIONS
1	Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 2007, 9, 255-267.	4.6	899
2	Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2006, 444, 574-579.	13.7	692
3	Cell Therapy of Â-Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts. Science, 2003, 301, 487-492.	6.0	593
4	Stem and Progenitor Cells in Skeletal Muscle Development, Maintenance, and Therapy. Molecular Therapy, 2007, 15, 867-877.	3.7	522
5	Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. Journal of Clinical Investigation, 2004, 114, 182-195.	3.9	315
6	Transplantation of Genetically Corrected Human iPSC-Derived Progenitors in Mice with Limb-Girdle Muscular Dystrophy. Science Translational Medicine, 2012, 4, 140ra89.	5.8	269
7	The involvement of microRNAs in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2013, 7, 265.	1.8	209
8	Restoration of Human Dystrophin Following Transplantation of Exon-Skipping-Engineered DMD Patient Stem Cells into Dystrophic Mice. Cell Stem Cell, 2007, 1, 646-657.	5.2	206
9	Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Cell Biology, 2006, 174, 231-243.	2.3	187
10	Intraâ€arterial transplantation of <scp>HLA</scp> â€matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Molecular Medicine, 2015, 7, 1513-1528.	3.3	146
11	Galectin-1 Induces Skeletal Muscle Differentiation in Human Fetal Mesenchymal Stem Cells and Increases Muscle Regeneration. Stem Cells, 2006, 24, 1879-1891.	1.4	144
12	Intracellular Delivery of a Tat-eGFP Fusion Protein into Muscle Cells. Molecular Therapy, 2001, 3, 310-318.	3.7	139
13	Stem Cell–Mediated Transfer of a Human Artificial Chromosome Ameliorates Muscular Dystrophy. Science Translational Medicine, 2011, 3, 96ra78.	5.8	137
14	Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. Journal of Neurology, 2011, 258, 1610-1623.	1.8	134
15	In Vivo Myogenic Potential of Human CD133+ Muscle-derived Stem Cells: A Quantitative Study. Molecular Therapy, 2009, 17, 1771-1778.	3.7	131
16	Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. Journal of Neuroscience Research, 2004, 77, 475-486.	1.3	129
17	?-enolase deficiency, a new metabolic myopathy of distal glycolysis. Annals of Neurology, 2001, 50, 202-207.	2.8	125
18	24 Month Longitudinal Data in Ambulant Boys with Duchenne Muscular Dystrophy. PLoS ONE, 2013, 8, e52512.	1.1	99

#	Article	IF	CITATIONS
19	Long Term Natural History Data in Ambulant Boys with Duchenne Muscular Dystrophy: 36-Month Changes. PLoS ONE, 2014, 9, e108205.	1.1	98
20	T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the <i>scid</i> / <i>mdx</i> mouse. Journal of Pathology, 2007, 213, 229-238.	2.1	93
21	Importance of <i>SPP1</i> genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology, 2012, 79, 159-162.	1.5	81
22	Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia, 2007, 55, 425-438.	2.5	80
23	6 Minute Walk Test in Duchenne MD Patients with Different Mutations: 12 Month Changes. PLoS ONE, 2014, 9, e83400.	1.1	65
24	Interstitial Cell Remodeling Promotes Aberrant Adipogenesis in Dystrophic Muscles. Cell Reports, 2020, 31, 107597.	2.9	64
25	Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiology of Aging, 2009, 30, 752-758.	1.5	63
26	Stem Cell Tracking by Nanotechnologies. International Journal of Molecular Sciences, 2010, 11, 1070-1081.	1.8	63
27	High-efficiency gene transfer into adult fish: A new tool to study fin regeneration. Genesis, 2002, 32, 27-31.	0.8	61
28	Immortalized Skin Fibroblasts Expressing Conditional MyoD as a Renewable and Reliable Source of Converted Human Muscle Cells to Assess Therapeutic Strategies for Muscular Dystrophies: Validation of an Exon-Skipping Approach to Restore Dystrophin in Duchenne Muscular Dystrophy Cells. Human Gene Therapy, 2009, 20, 784-790.	1.4	60
29	Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. Journal of Cell Biology, 2003, 162, 511-520.	2.3	59
30	Selfâ€Assembled Dual Dyeâ€Doped Nanosized Micelles for Highâ€Contrast Upâ€Conversion Bioimaging. Advanced Functional Materials, 2016, 26, 8447-8454.	7.8	58
31	Effect of Human Skin-Derived Stem Cells on Vessel Architecture, Tumor Growth, and Tumor Invasion in Brain Tumor Animal Models. Cancer Research, 2007, 67, 3054-3063.	0.4	55
32	Cell based therapy for duchenne muscular dystrophy. Journal of Cellular Physiology, 2009, 221, 526-534.	2.0	55
33	Permanent excimer superstructures by supramolecular networking of metal quantum clusters. Science, 2016, 353, 571-575.	6.0	54
34	Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. American Journal of Transplantation, 2018, 18, 590-603.	2.6	53
35	Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures. BMC Neurology, 2012, 12, 91.	0.8	52
36	Longitudinal <scp>MRI</scp> quantification of muscle degeneration in Duchenne muscular dystrophy. Annals of Clinical and Translational Neurology, 2016, 3, 607-622.	1.7	50

#	Article	IF	CITATIONS
37	AAV6-mediated Systemic shRNA Delivery Reverses Disease in a Mouse Model of Facioscapulohumeral Muscular Dystrophy. Molecular Therapy, 2011, 19, 2055-2064.	3.7	43
38	Stem Cell Therapies to Treat Muscular Dystrophy. BioDrugs, 2010, 24, 237-247.	2.2	40
39	CD133 ⁺ cells isolated from various sources and their role in future clinical perspectives. Expert Opinion on Biological Therapy, 2010, 10, 1521-1528.	1.4	40
40	High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Letters, 2006, 580, 5759-5764.	1.3	37
41	Therapeutic Potential of Immunoproteasome Inhibition in Duchenne Muscular Dystrophy. Molecular Therapy, 2016, 24, 1898-1912.	3.7	37
42	Magic-Factor 1, a Partial Agonist of Met, Induces Muscle Hypertrophy by Protecting Myogenic Progenitors from Apoptosis. PLoS ONE, 2008, 3, e3223.	1.1	36
43	Hmgb3 Is Regulated by MicroRNA-206 during Muscle Regeneration. PLoS ONE, 2012, 7, e43464.	1.1	35
44	Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS ONE, 2014, 9, e114787.	1.1	33
45	Polyglycolic Acid–Polylactic Acid Scaffold Response to Different Progenitor Cell <i>In Vitro</i> Cultures: A Demonstrative and Comparative X-Ray Synchrotron Radiation Phase-Contrast Microtomography Study. Tissue Engineering - Part C: Methods, 2014, 20, 308-316.	1.1	32
46	Timed Rise from Floor as a Predictor of Disease Progression in Duchenne Muscular Dystrophy: An Observational Study. PLoS ONE, 2016, 11, e0151445.	1.1	32
47	Organization of Extracellular Matrix Fibers Within Polyglycolic Acid–Polylactic Acid Scaffolds Analyzed Using X-Ray Synchrotron-Radiation Phase-Contrast Micro Computed Tomography. Tissue Engineering - Part C: Methods, 2009, 15, 403-411.	1.1	31
48	Perspectives of stem cell therapy in <scp>D</scp> uchenne muscular dystrophy. FEBS Journal, 2013, 280, 4251-4262.	2.2	30
49	Effects of rituximab in two patients with dysferlin-deficient muscular dystrophy. BMC Musculoskeletal Disorders, 2010, 11, 157.	0.8	29
50	Fibrosis Rescue Improves Cardiac Function in Dystrophin-Deficient Mice and Duchenne Patient–Specific Cardiomyocytes by Immunoproteasome Modulation. American Journal of Pathology, 2019, 189, 339-353.	1.9	27
51	A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes. Nutrients, 2020, 12, 282.	1.7	27
52	Absence of T and B lymphocytes modulates dystrophic features in dysferlin deficient animal model. Experimental Cell Research, 2012, 318, 1160-1174.	1.2	26
53	VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood, 2006, 108, 2857-66.	0.6	25
54	Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development (Cambridge), 2011, 138, 4523-4533.	1.2	25

#	Article	IF	CITATIONS
55	Topical treatment of radiation-induced dermatitis: current issues and potential solutions. Drugs in Context, 2020, 9, 1-13.	1.0	25
56	Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs. Molecular Therapy, 2016, 24, 1949-1964.	3.7	24
57	Demonstration of cellular imaging by using luminescent and anti-cytotoxic europium-doped hafnia nanocrystals. Nanoscale, 2018, 10, 7933-7940.	2.8	24
58	Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy. Journal of Muscle Research and Cell Motility, 2016, 37, 101-115.	0.9	23
59	Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction. Stem Cells Translational Medicine, 2016, 5, 451-463.	1.6	22
60	Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development (Cambridge), 2016, 143, 658-669.	1.2	22
61	Selfâ€Assembled pHâ€5ensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer. Advanced Functional Materials, 2018, 28, 1707582.	7.8	22
62	Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Scientific Reports, 2018, 8, 14659.	1.6	22
63	Metformin rescues muscle function in BAG3 myofibrillar myopathy models. Autophagy, 2021, 17, 2494-2510.	4.3	22
64	Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy. Cells, 2020, 9, 441.	1.8	22
65	Ex vivo expansion of human circulating myogenic progenitors on cluster-assembled nanostructured TiO2. Biomaterials, 2010, 31, 5385-5396.	5.7	21
66	<i>In Vivo</i> Tracking of Stem Cell by Nanotechnologies: Future Prospects for Mouse to Human Translation. Tissue Engineering - Part B: Reviews, 2011, 17, 1-11.	2.5	21
67	Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I. Human Molecular Genetics, 2017, 26, 3682-3698.	1.4	20
68	Preliminary Evidences of Safety and Efficacy of Flavonoids- and Omega 3-Based Compound for Muscular Dystrophies Treatment: A Randomized Double-Blind Placebo Controlled Pilot Clinical Trial. Frontiers in Neurology, 2019, 10, 755.	1.1	19
69	The Immune System in Duchenne Muscular Dystrophy Pathogenesis. Biomedicines, 2021, 9, 1447.	1.4	19
70	Identification of Different Genomic Deletions and One Duplication in the Dysferlin Gene Using Multiplex Ligation-Dependent Probe Amplification and Genomic Quantitative PCR. Genetic Testing and Molecular Biomarkers, 2009, 13, 439-442.	0.3	18
71	Advancements in stem cells treatment of skeletal muscle wasting. Frontiers in Physiology, 2014, 5, 48.	1.3	18
72	Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Molecular Medicine, 2020, 12, e11019.	3.3	18

#	Article	IF	CITATIONS
73	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	1.1	18
74	Stem Cell Salvage of Injured Peripheral Nerve. Cell Transplantation, 2015, 24, 213-222.	1.2	17
75	MICAL2 is essential for myogenic lineage commitment. Cell Death and Disease, 2020, 11, 654.	2.7	17
76	PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy. Frontiers in Physiology, 2020, 11, 403.	1.3	15
77	Novel insight into stem cell trafficking in dystrophic muscles. International Journal of Nanomedicine, 2012, 7, 3059.	3.3	14
78	Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opinion on Biological Therapy, 2008, 8, 1051-1061.	1.4	13
79	The Role of Stem Cells in Muscular Dystrophies. Current Gene Therapy, 2012, 12, 192-205.	0.9	13
80	P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 187-196.	1.3	13
81	Functionalized Scintillating Nanotubes for Simultaneous Radio- and Photodynamic Therapy of Cancer. ACS Applied Materials & Interfaces, 2021, 13, 12997-13008.	4.0	13
82	Defective dystrophic thymus determines degenerative changes in skeletal muscle. Nature Communications, 2021, 12, 2099.	5.8	13
83	Fullâ€length dysferlin expression driven by engineered human dystrophic blood derived <scp>CD</scp> 133+ stem cells. FEBS Journal, 2013, 280, 6045-6060.	2.2	12
84	Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. Journal of Neuroscience Research, 2018, 96, 1576-1585.	1.3	12
85	Improvement of Endurance of DMD Animal Model Using Natural Polyphenols. BioMed Research International, 2015, 2015, 1-17.	0.9	11
86	CD20-related signaling pathway is differently activated in normal and dystrophic circulating CD133+ stem cells. Cellular and Molecular Life Sciences, 2009, 66, 697-710.	2.4	10
87	Correlation of Circulating CD133+ Progenitor Subclasses with a Mild Phenotype in Duchenne Muscular Dystrophy Patients. PLoS ONE, 2008, 3, e2218.	1.1	9
88	Expression of CD20 reveals a new store-operated calcium entry modulator in skeletal muscle. International Journal of Biochemistry and Cell Biology, 2012, 44, 2095-2105.	1.2	9
89	Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies. BioMed Research International, 2014, 2014, 1-16.	0.9	8
90	Expression of Parathyroid-Specific Genes in Vascular Endothelial Progenitors of Normal and Tumoral Parathyroid Glands. American Journal of Pathology, 2009, 175, 1200-1207.	1.9	7

#	Article	IF	CITATIONS
91	Role of Immunoglobulins in Muscular Dystrophies and Inflammatory Myopathies. Frontiers in Immunology, 2021, 12, 666879.	2.2	7
92	Treatment with ROS detoxifying gold quantum clusters alleviates the functional decline in a mouse model of Friedreich ataxia. Science Translational Medicine, 2021, 13, .	5.8	7
93	Correction: Corrigendum: Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 2013, 494, 506-506.	13.7	6
94	Duchenne muscular dystrophy caused by a frame-shift mutation in the acceptor splice site of intron 26. BMC Medical Genetics, 2016, 17, 55.	2.1	5
95	Clinical Determinants of Disease Progression in Patients With Beta-Sarcoglycan Gene Mutations. Frontiers in Neurology, 2021, 12, 657949.	1.1	5
96	Establishment of a Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line carrying a deletion of exons 51–53 of the dystrophin gene (CCMi003-A). Stem Cell Research, 2019, 40, 101544.	0.3	4
97	A mathematical model of healthy and dystrophic skeletal muscle biomechanics. Journal of the Mechanics and Physics of Solids, 2020, 134, 103747.	2.3	4
98	CD133+ Cells for the Treatment of Degenerative Diseases: Update and Perspectives. Advances in Experimental Medicine and Biology, 2013, 777, 229-243.	0.8	4
99	Intra-aortic injection of myoblasts in mdx mice: Genetic and technetium-99m cell labeling and biodistribution. , 1997, 20, 757-759.		3
100	Bioimaging: Self-Assembled Dual Dye-Doped Nanosized Micelles for High-Contrast Up-Conversion Bioimaging (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8446-8446.	7.8	3
101	Effective high-throughput isolation of enriched platelets and circulating pro-angiogenic cells to accelerate skin-wound healing. Cellular and Molecular Life Sciences, 2022, 79, 259.	2.4	3
102	Stem Cell Therapy for Neuromuscular Diseases. , 0, , .		2
103	Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C Stem Cell Research, 2020, 45, 101819.	0.3	2
104	Effect of myofibril architecture on the active contraction of dystrophic muscle. A mathematical model. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104214.	1.5	2
105	Shotgun Proteomics of Isolated Urinary Extracellular Vesicles for Investigating Respiratory Impedance in Healthy Preschoolers. Molecules, 2021, 26, 1258.	1.7	2
106	Stem Cell-Mediated Exon Skipping of the Dystrophin Gene by the Bystander Effect. Current Gene Therapy, 2015, 15, 563-571.	0.9	2
107	Flavonoids and Omega3 Prevent Muscle and Cardiac Damage in Duchenne Muscular Dystrophy Animal Model. Cells, 2021, 10, 2917.	1.8	2
108	Behavioral Variant of Frontotemporal Dementia and Homicide in a Historical Case. Journal of the American Academy of Psychiatry and the Law, 2021, 49, 219-227.	0.2	2

YVAN TORRENTE

#	Article	IF	CITATIONS
109	In vivo biolistic technique in control and mdx dystrophic mice. , 1996, 19, 912-914.		0
110	The role of interleukin-6 (IL-6) in the proliferation and differentiation of human neural stem cells. Neuroscience Research Communications, 2001, 29, 1-14.	0.2	0
111	Correction: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Cell Biology, 2006, 175, 361-361.	2.3	0
112	Correction: Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration abilit. Journal of Cell Biology, 2006, 174, 605-605.	2.3	0
113	Stem Cell Therapy in Duchenne Muscular Dystrophy. Molecular and Translational Medicine, 2017, , 297-317.	0.4	0
114	Myalgia, Obtundity and Fever in a Patient with a Prosthesis. European Journal of Case Reports in Internal Medicine, 2019, 6, 001021.	0.2	0
115	Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. Journal of Experimental Medicine, 2006, 203, i21-i21.	4.2	0
116	Combining Stem Cells and Exon Skipping Strategy to Treat Muscular Dystrophy. , 2010, , 249-256.		0
117	Duchenne Muscular Dystrophy: Isolation of CD133-Expressing Myogenic Progenitors from Blood and Muscle of DMD Patients. , 2012, , 277-285.		0
118	Stem Cells in Dystrophic Animal Models: From Preclinical to Clinical Studies. Pancreatic Islet Biology, 2014, , 3-30.	0.1	0
119	Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Journal of Cell Science, 2016, 129, e1.2-e1.2.	1.2	0
120	Myalgia, Obtundity and Fever in a Patient with a Prosthesis. European Journal of Case Reports in Internal Medicine, 2019, , .	0.2	0