List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690715/publications.pdf Version: 2024-02-01

XUE-DIN LIAO

#	Article	IF	CITATIONS
1	Natural polyphenol-based nanoengineering of collagen-constructed hemoperfusion adsorbent for the excretion of heavy metals. Journal of Hazardous Materials, 2022, 428, 128145.	12.4	10
2	Hierarchical collagen fibers complexed with tannic acid and Fe3+ as a heterogeneous catalyst for enhancing sulfate radical-based advanced oxidation process. Environmental Science and Pollution Research, 2022, 29, 58675-58684.	5.3	4
3	Polyethyleneimine/hydrated titanium oxide-functionalized fibrous adsorbent for removing cobalt: Adsorption performance and irradiation stability. Environmental Research, 2022, 211, 112916.	7.5	10
4	Polyphenol modified natural collagen fibrous network towards sustainable and antibacterial microfiltration membrane for efficient water disinfection. Water Research, 2022, 218, 118469.	11.3	22
5	Natural leather based gamma-ray shielding materials enabled by the coordination of well-dispersed Bi3+/Ba2+ ions and RE2O3 coating. Journal of Leather Science and Engineering, 2022, 4, .	6.0	6
6	Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater. Journal of Environmental Management, 2021, 283, 112001.	7.8	23
7	Microwave-Assisted Sulfonation of Lignin for the Fabrication of a High-Performance Dye Dispersant. ACS Sustainable Chemistry and Engineering, 2021, 9, 9053-9061.	6.7	24
8	Collagen peptide provides Streptomyces coelicolor CGMCC 4.7172 with abundant precursors for enhancing undecylprodigiosin production. Journal of Leather Science and Engineering, 2021, 3, .	6.0	7
9	Lightweight and Flexible Bi@Bi-La Natural Leather Composites with Superb X-ray Radiation Shielding Performance and Low Secondary Radiation. ACS Applied Materials & Interfaces, 2020, 12, 54117-54126.	8.0	31
10	Collagen Peptide Provides <i>Saccharomyces cerevisiae</i> with Robust Stress Tolerance for Enhanced Bioethanol Production. ACS Applied Materials & Interfaces, 2020, 12, 53879-53890.	8.0	17
11	Immobilization of Ytterbium by Plant Polyphenols for Antibiofilm Materials with Highly Effective Activity and Long-Term Stability. Industrial & Engineering Chemistry Research, 2020, 59, 18558-18566.	3.7	4
12	Collagen Fiber/Fe ₃ O ₄ /Polypyrrole Nanocomposites for Absorption-Type Electromagnetic Interference Shielding and Radar Stealth. ACS Applied Nano Materials, 2020, 3, 11906-11915.	5.0	19
13	Lightweight and Wearable Xâ€Ray Shielding Material with Biological Structure for Low Secondary Radiation and Metabolic Saving Performance. Advanced Materials Technologies, 2020, 5, 2000240.	5.8	25
14	Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials. Journal of Hazardous Materials, 2020, 398, 122943.	12.4	39
15	A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity. Journal of Energy Chemistry, 2020, 47, 324-332.	12.9	16
16	Synthesis of Catechinâ€Rare Earth Complex with Efficient and Broad‧pectrum Antiâ€Biofilm Activity. Chemistry and Biodiversity, 2020, 17, e1900734.	2.1	7
17	Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather. ACS Applied Materials & Interfaces, 2020, 12, 19916-19926.	8.0	48
18	Prevention of Bacterial Colonization Based on Self-Assembled Metal–Phenolic Nanocoating from Rare-Earth Ions and Catechin. ACS Applied Materials & Interfaces, 2020, 12, 22237-22245.	8.0	19

#	Article	IF	CITATIONS
19	Radionuclide tolerance mechanism of plants for ultraselective enrichment of low content of thorium with exceptional selectivity coefficient. Journal of Hazardous Materials, 2019, 380, 120893.	12.4	4
20	Self-Assembly: Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970028.	11.2	2
21	Metal-Phenolic Nanoparticles: Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer (Adv. Biosys. 2/2019). Advanced Biology, 2019, 3, 1970022.	3.0	1
22	Glycine betaine enhances biodegradation of phenol in high saline environments by the halophilic strainOceanobacillussp. PT-20. RSC Advances, 2019, 9, 29205-29216.	3.6	7
23	Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energy and Environmental Science, 2019, 12, 607-614.	30.8	259
24	Selfâ€Assembled Metalâ€Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. Advanced Biology, 2019, 3, e1800241.	3.0	30
25	Targeted Therapy against Metastatic Melanoma Based on Selfâ€Assembled Metalâ€Phenolic Nanocomplexes Comprised of Green Tea Catechin. Advanced Science, 2019, 6, 1801688.	11.2	109
26	Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 14036-14044.	8.0	44
27	Immobilization of <i>Saccharomyces cerevisiae</i> using polyethyleneimine grafted collagen fibre as support and investigations of its fermentation performance. Biotechnology and Biotechnological Equipment, 2018, 32, 109-115.	1.3	12
28	Adaptations of <i>Bacillus shacheensis</i> HNA-14 required for long-term survival under osmotic challenge: a multi-omics perspective. RSC Advances, 2018, 8, 27525-27536.	3.6	10
29	Controllable Synthesis of Monolayer Poly(acrylic acid) on the Channel Surface of Mesoporous Alumina for Pb(II) Adsorption. Langmuir, 2018, 34, 7859-7868.	3.5	78
30	Synthesis, Characterization, and Antibacterial Activity of Rare Earth-Catechin Complexes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 543-550.	4.9	3
31	Investigation of collagen hydrolysate used as carbon and nitrogen source in the fermentation of Bacillus pumilus. Process Biochemistry, 2017, 55, 11-16.	3.7	8
32	A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste. RSC Advances, 2017, 7, 4024-4029.	3.6	23
33	Collagen Fiber Membrane as an Absorptive Substrate To Coat with Carbon Nanotubes-Encapsulated Metal Nanoparticles for Lightweight, Wearable, and Absorption-Dominated Shielding Membrane. Industrial & Engineering Chemistry Research, 2017, 56, 8553-8562.	3.7	19
34	A facile synthesis of a highly stable superhydrophobic nanofibrous film for effective oil/water separation. RSC Advances, 2016, 6, 82352-82358.	3.6	12
35	Hierarchically structured C@SnO ₂ @C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18783-18791.	10.3	42
36	Natural collagen fiber-enabled facile synthesis of carbon@Fe ₃ O ₄ core–shell nanofiber bundles and their application as ultrahigh-rate anode materials for Li-ion batteries. RSC Advances, 2016, 6, 10824-10830.	3.6	17

#	Article	IF	CITATIONS
37	Lightweight and high-performance electromagnetic radiation shielding composites based on a surface coating of Cu@Ag nanoflakes on a leather matrix. Journal of Materials Chemistry C, 2016, 4, 914-920.	5.5	56
38	Effect of ultrasonic pretreatment on kinetics of gelatin hydrolysis by collagenase and its mechanism. Ultrasonics Sonochemistry, 2016, 29, 495-501.	8.2	35
39	Development of a Rapid Discrimination Tool for Luzhou-flavor Pit Mud Classification by the Kohonen Artificial Neural Network Model. Food Analytical Methods, 2015, 8, 1734-1738.	2.6	2
40	Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. Journal of Materials Chemistry C, 2015, 3, 10146-10153.	5.5	75
41	Pd nanoparticles immobilized on boehmite by using tannic acid as structure-directing agent and stabilizer: a high performance catalyst for hydrogenation of olefins. Research on Chemical Intermediates, 2014, 40, 249-258.	2.7	9
42	Effect of ultrasound on the activity and conformation of $\hat{I}\pm$ -amylase, papain and pepsin. Ultrasonics Sonochemistry, 2014, 21, 930-936.	8.2	117
43	Facile synthesis of mesoporous sulfated Ce/TiO2nanofiber solid superacid with nanocrystalline frameworks by using collagen fibers as a biotemplate and its application in esterification. RSC Advances, 2014, 4, 4010-4019.	3.6	30
44	Physicochemical Properties and Surface Activities of Collagen Hydrolysate-Based Surfactants with Varied Oleoyl Group Grafting Degree. Industrial & Engineering Chemistry Research, 2014, 53, 8501-8508.	3.7	12
45	Volatile Compounds of Raw Spirits from Different Distilling Stages of Luzhou-flavor Spirit. Food Science and Technology Research, 2014, 20, 283-293.	0.6	11
46	Analysis of volatile compounds in Chinese soy sauces moromi cultured by different fermentation processes. Food Science and Biotechnology, 2013, 22, 605-612.	2.6	29
47	Using plant tannin as natural amphiphilic stabilizer to construct an aqueous–organic biphasic system for highly active and selective hydrogenation of quinoline. Catalysis Science and Technology, 2013, 3, 1612.	4.1	35
48	One-Pot Facile Synthesis of Cerium-Doped TiO ₂ Mesoporous Nanofibers Using Collagen Fiber As the Biotemplate and Its Application in Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 9739-9746.	3.1	88
49	Adsorption Chromatography Separation of Baicalein and Baicalin Using Collagen Fiber Adsorbent. Industrial & Engineering Chemistry Research, 2013, 52, 2425-2433.	3.7	11
50	One-step seeding growth of controllable Ag@Ni core–shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption. Journal of Materials Chemistry, 2012, 22, 11933.	6.7	134
51	Skin Collagen Fiber-Biotemplated Synthesis of Size-Tunable Silver Nanoparticle-Embedded Hierarchical Intertextures with Lightweight and Highly Efficient Microwave Absorption Properties. Journal of Physical Chemistry C, 2012, 116, 8188-8195.	3.1	45
52	Molecular level understanding of the role of aldehyde in vegetableâ€aldehyde–collagen crossâ€linking reaction. International Journal of Quantum Chemistry, 2012, 112, 2832-2839.	2.0	6
53	Recyclable plant tanninâ€chelated Rh(III) complex catalysts for aqueous–organic biphasic hydrogenation of quinoline. Journal of Chemical Technology and Biotechnology, 2012, 87, 1104-1110.	3.2	4
54	One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties. New Journal of Chemistry, 2011, 35, 2902.	2.8	28

#	Article	IF	CITATIONS
55	Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chemistry, 2011, 13, 651.	9.0	167
56	One-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chemistry, 2011, 13, 950.	9.0	109
57	Synthesis of highly active and reusable supported gold nanoparticles and their catalytic applications to 4-nitrophenol reduction. Green Chemistry, 2011, 13, 2801.	9.0	95
58	Skin collagen fiber-based radar absorbing materials. Science Bulletin, 2011, 56, 202-208.	1.7	7
59	Catalytic hydrogenation of quinoline over recyclable palladium nanoparticles supported on tannin grafted collagen fibers. Journal of Molecular Catalysis A, 2011, 341, 51-56.	4.8	58
60	One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chemistry, 2010, 12, 395-399.	9.0	198
61	Liquid phase hydrogenation of olefins using heterogenized ruthenium complexes as high active and reusable catalyst. Catalysis Communications, 2010, 11, 487-492.	3.3	12
62	Separation of Proanthocyanidins into Oligomeric and Polymeric Components Using a Novel Collagen Fiber Adsorbent. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1901-1913.	1.0	3
63	Highly stable Pt nanoparticle catalyst supported by polyphenolâ€grafted collagen fiber and its catalytic application in the hydrogenation of olefins. Journal of Chemical Technology and Biotechnology, 2009, 84, 1702-1711.	3.2	18
64	Recovery of Th(IV) from aqueous solution by reassembled collagen-tannin fiber adsorbent. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280, 91-98.	1.5	20
65	Pd(0) Nanoparticle Stabilized by Tannin-grafted SiO2 Beads and Its Application in Liquid-hydrogenation of Unsaturated Organic Compounds. Catalysis Letters, 2009, 133, 192-200.	2.6	11
66	Adsorption of metal anions of vanadium(V) and chromium(VI) on Zr(IV)-impregnated collagen fiber. Adsorption, 2008, 14, 55-64.	3.0	85
67	Synthesis of unique mesoporous ZrO2-carbon fiber from collagen fiber. Microporous and Mesoporous Materials, 2008, 116, 705-709.	4.4	20
68	Using Collagen Fiber as a Template to Synthesize Hierarchical Mesoporous Alumina Fiber. Langmuir, 2008, 24, 368-370.	3.5	44
69	Synthesis of hierarchical mesoporous zirconia fiber by using collagen fiber as a template. Journal of Materials Research, 2008, 23, 3263-3268.	2.6	15
70	Adsorption Behavior of Phosphate on Metal-Ions-Loaded Collagen Fiber. Industrial & Engineering Chemistry Research, 2006, 45, 3896-3901.	3.7	67
71	Adsorption of bismuth(III) by bayberry tannin immobilized on collagen fiber. Journal of Chemical Technology and Biotechnology, 2006, 81, 1301-1306.	3.2	16
72	Selective removal of tannins from medicinal plant extracts using a collagen fiber adsorbent. Journal of the Science of Food and Agriculture, 2005, 85, 1285-1291.	3.5	36

#	Article	IF	CITATIONS
73	Adsorption Behaviors of Pt(II) and Pd(II) on Collagen Fiber Immobilized Bayberry Tannin. Industrial & Engineering Chemistry Research, 2005, 44, 4221-4226.	3.7	71
74	Adsorption of Fluoride on Zirconium(IV)-Impregnated Collagen Fiber. Environmental Science & Technology, 2005, 39, 4628-4632.	10.0	224
75	Adsorption recovery of thorium(IV) by Myrica rubra tannin and larch tannin immobilized onto collagen fibres. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260, 619-625.	1.5	43
76	Adsorption of Cu(II) from aqueous solutions by tannins immobilized on collagen. Journal of Chemical Technology and Biotechnology, 2004, 79, 335-342.	3.2	40
77	Collagen Fiber ImmobilizedMyrica rubraTannin and Its Adsorption to. Environmental Science & Technology, 2004, 38, 324-328.	10.0	96