Jian Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690694/publications.pdf

Version: 2024-02-01

197 papers	4,719 citations	94269 37 h-index	52 g-index
198	198	198	3318 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synthesis and Antibacterial Activity of Selenium-functionalized Poly(Îμ-caprolactone). Chinese Journal of Polymer Science (English Edition), 2022, 40, 67-74.	2.0	6
2	Synthesis of Precisely Structured Olefin Copolymers by Phenylseleno Oxidation Elimination. Macromolecular Chemistry and Physics, 2022, 223, 2100351.	1.1	3
3	Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Reactive and Functional Polymers, 2022, 172, 105189.	2.0	13
4	Catalyst-Free, Visible-Light-Induced Step-Growth Polymerization by a Photo-RAFT Single-Unit Monomer Insertion Reaction. ACS Macro Letters, 2022, 11, 230-235.	2.3	12
5	Thermally Driven Diselenide Metathesis: Polarization Process vs Radical Process. ACS Macro Letters, 2022, 11, 264-269.	2.3	8
6	Controlled microflow cationic polymerization of vinyl ethers under ambient conditions. Chemical Engineering Journal, 2022, 435, 134828.	6.6	3
7	Xanthate-Based Photoiniferter RAFT Polymerization toward Oxygen-Tolerant and Rapid Living 3D Printing. Macromolecules, 2022, 55, 1620-1628.	2.2	25
8	Fabrication of Oxidative and pH Dual-Responsive Photonic Crystals Based on Sulfide-Containing Block Copolymers. ACS Applied Polymer Materials, 2022, 4, 3315-3323.	2.0	5
9	Controlled cationic polymerization using RAFT agents with selenonium cations as metal-free Lewis acids: from homogeneous to heterogeneous catalysis. Polymer Chemistry, 2022, 13, 2757-2763.	1.9	5
10	Visual Ozone Sensor: Structural Color Change of Pendant Seleniumâ€Containing Maleimide Polymers via Oxidation. Macromolecular Rapid Communications, 2021, 42, 2000517.	2.0	5
11	Diselenide–yne polymerization for multifunctional selenium-containing hyperbranched polymers. Polymer Chemistry, 2021, 12, 3383-3390.	1.9	9
12	Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polymer Chemistry, 2021, 12, 983-990.	1.9	12
13	Photoresponsive dynamic covalent bond based on addition–fragmentation chain transfer of allyl selenides. Polymer Chemistry, 2021, 12, 1622-1626.	1.9	14
14	Controllable Radical Polymerization of Selenide Functionalized Vinyl Monomers and Its Application in Redox Responsive Photonic Crystals. Macromolecular Rapid Communications, 2021, 42, e2000764.	2.0	9
15	An On-Demand Dissoluble Chitosan Hydrogel Containing Dynamic Diselenide Bond. Gels, 2021, 7, 21.	2.1	9
16	Manganese-Catalyzed Batch and Continuous Flow Cationic RAFT Polymerization Induced by Visible Light. ACS Macro Letters, 2021, 10, 570-575.	2.3	19
17	Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein. Polymers, 2021, 13, 1632.	2.0	4
18	Combination of the Photoinduced Atom Transfer Radical Addition Reaction and Living Cationic Polymerization: A Latent Initiator Strategy toward Tailoring Polymer Molecular Weight Distributions. Macromolecules, 2021, 54, 6502-6510.	2.2	15

#	Article	IF	CITATIONS
19	Controlling Polymer Molecular Weight Distribution through a Latent Mediator Strategy with Temporal Programming. Angewandte Chemie - International Edition, 2021, 60, 19705-19709.	7.2	16
20	Photo masking via breaking alkyl C Se bond of selenium-containing maleimide polymers by ultraviolet light. European Polymer Journal, 2021, 159, 110764.	2.6	2
21	A facile strategy to construct versatile fluorescent probes for the detection of Au3+ and nitroaromatic. Reactive and Functional Polymers, 2021, 167, 105017.	2.0	5
22	Photoinduced Free Radical Promoted Cationic RAFT Polymerization toward "Living―3D Printing. ACS Macro Letters, 2021, 10, 1315-1320.	2.3	29
23	Selenide-containing soluble polyimides: High refractive index and redox responsiveness. European Polymer Journal, 2020, 122, 109358.	2.6	20
24	Organoselenium chemistry-based polymer synthesis. Organic Chemistry Frontiers, 2020, 7, 2815-2841.	2.3	64
25	On-Demand Dissoluble Diselenide-Containing Hydrogel. Biomacromolecules, 2020, 21, 3308-3317.	2.6	20
26	Near-Infrared, Light-Induced Cationic and Radical RAFT Polymerization Catalyzed by Iron Complex. ACS Macro Letters, 2020, 9, 1799-1805.	2.3	26
27	Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science, 2020, 7, 2001656.	5.6	139
28	A Novel Synthesis of Poly(Ester-Alt-Selenide)s by Ring-Opening Copolymerization of Î ³ -Selenobutyrolactone and Epoxy Monomer. Polymers, 2020, 12, 1203.	2.0	8
29	Novel AlEgen-Functionalized Diselenide-Crosslinked Polymer Gels as Fluorescent Probes and Drug Release Carriers. Polymers, 2020, 12, 551.	2.0	20
30	Manganese carbonyl induced cationic reversible addition–fragmentation chain transfer (C-RAFT) polymerization under visible light. Polymer Chemistry, 2020, 11, 2724-2731.	1.9	20
31	Synthesis of high refractive index polymer with pendent selenium-containing maleimide and use as a redox sensor. Polymer Chemistry, 2019, 10, 4279-4286.	1.9	25
32	Selenium-doped phenolic resin spheres: Ultra-high adsorption capacity of noble metals. Reactive and Functional Polymers, 2019, 142, 223-230.	2.0	11
33	One-pot cascade polymerization based on the addition reactions of electrophilic selenium reagents to alkenes. Polymer Chemistry, 2019, 10, 574-581.	1.9	11
34	Visible light induced controlled cationic polymerization by <i>in situ</i> generated catalyst from manganese carbonyl. Chemical Communications, 2019, 55, 7045-7048.	2.2	23
35	The functionalization of poly(Îμ-caprolactone) as a versatile platform using Îμ-(α-phenylseleno) caprolactone as a monomer. Polymer Chemistry, 2019, 10, 3851-3858.	1.9	11
36	Recyclable Self-Healing Polyurethane Cross-Linked by Alkyl Diselenide with Enhanced Mechanical Properties. Polymers, 2019, 11, 773.	2.0	19

#	Article	IF	CITATIONS
37	Selenol-Based Nucleophilic Reaction for the Preparation of Reactive Oxygen Species-Responsive Amphiphilic Diblock Copolymers. Polymers, 2019, 11, 827.	2.0	1
38	Hyperbranched Polycaprolactone through RAFT Polymerization of 2-Methylene-1,3-dioxepane. Polymers, 2019, 11, 318.	2.0	19
39	Investigation into the Direct Photolysis Process of Photo-Induced RAFT Polymerization by ESR Spin Trapping. Polymers, 2019, 11, 1722.	2.0	10
40	Synthesis of selenide-containing polymers by multicomponent polymerization based on \hat{l}^3 -butyroselenolactone. Polymer Chemistry, 2019, 10, 6395-6400.	1.9	9
41	Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules, 2019, 52, 236-248.	2.2	105
42	Photoinduced controlled radical polymerization of methyl acrylate and vinyl acetate by xanthate. Polymer Chemistry, 2018, 9, 2897-2904.	1.9	19
43	Facile synthesis of advanced gradient polymers with sequence control using furan-protected maleimide as a comonomer. Polymer Chemistry, 2018, 9, 1571-1576.	1.9	18
44	Synthesize of large-sized porous carbon spheres with controllable N-content via spray-drying and photo-induced RAFT polymerization. Reactive and Functional Polymers, 2018, 131, 315-325.	2.0	1
45	Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior. Polymers, 2018, 10, 321.	2.0	5
46	Dynamic diselenide-containing polyesters from alcoholysis/oxidation of \hat{I}^3 -butyroselenolactone. Polymer Chemistry, 2018, 9, 4044-4051.	1.9	20
47	Selenide-Containing Polyimides with an Ultrahigh Intrinsic Refractive Index. Polymers, 2018, 10, 417.	2.0	22
48	From seleno-mediated radical polymerization to seleno-containing branched polymers and dynamic hydrogel. RSC Advances, 2017, 7, 9773-9779.	1.7	9
49	Photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile at ambient temperature: A simple system to obtain high-molecular-weight polyacrylonitrile. Reactive and Functional Polymers, 2017, 113, 1-5.	2.0	22
50	Aromatic diselenide crosslinkers to enhance the reprocessability and self-healing of polyurethane thermosets. Polymer Chemistry, 2017, 8, 3641-3646.	1.9	102
51	Selenium borohydride reaction as a versatile platform for the straightforward preparation of selenide-containing topological polymers. Polymer Chemistry, 2017, 8, 3958-3964.	1.9	8
52	Dynamic furan/maleimide bond-incorporated cyclic polymer for topology transformation. Reactive and Functional Polymers, 2017, 116, 41-48.	2.0	11
53	A degradable cross-linked polymer containing dynamic covalent selenide bond. Polymer Chemistry, 2017, 8, 3874-3880.	1.9	16
54	Selenide-containing high refractive index polymer material with adjustable refractive index and Abbe's number. Reactive and Functional Polymers, $2017, 111, 1-6$.	2.0	40

#	Article	IF	Citations
55	Temperature programed photo-induced RAFT polymerization of stereo-block copolymers of poly(vinyl) Tj ETQq1	l 0.784314 1.9	rgBT /Over
56	Toward alternating copolymerization of maleimide and vinyl acetate driven by hydrogen bonding. Polymer Chemistry, 2017, 8, 6909-6916.	1.9	9
57	Chlorophyll a crude extract: efficient photo-degradable photocatalyst for PET-RAFT polymerization. Chemical Communications, 2017, 53, 12560-12563.	2.2	58
58	Visible Lightâ€Induced Living Radical Polymerization of Butyl Acrylate: Photocatalystâ€Free, Ultrafast, and Oxygen Tolerance. Macromolecular Rapid Communications, 2017, 38, 1600482.	2.0	46
59	Highly Efficient Chain End Derivatization of Selenol-Ended Polystyrenes by Nucleophilic Substitution Reactions. Macromolecular Chemistry and Physics, 2017, 218, 1600485.	1.1	13
60	Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15. Polymers, 2017, 9, 58.	2.0	23
61	Diselenide-Labeled Cyclic Polystyrene with Multiple Responses: Facile Synthesis, Tunable Size, and Topology. Macromolecular Rapid Communications, 2016, 37, 865-871.	2.0	19
62	A degradable copolymer of 2-methylene-1,3-dioxepane and vinyl acetate by photo-induced cobalt-mediated radical polymerization. Polymer Chemistry, 2016, 7, 5258-5264.	1.9	38
63	Platform of near-infrared light-induced reversible deactivation radical polymerization: upconversion nanoparticles as internal light sources. Polymer Chemistry, 2016, 7, 7370-7374.	1.9	48
64	A Straightforward Method for Preparing Well-Defined Responsive Diselenide-Containing Polymers Based on ATRP. Macromolecular Rapid Communications, 2015, 36, 903-908.	2.0	16
65	Photocatalystâ€Free and Blue Lightâ€Induced RAFT Polymerization of Vinyl Acetate at Ambient Temperature. Macromolecular Rapid Communications, 2015, 36, 2181-2185.	2.0	76
66	A Novel Janus Initiator for ATRP: Initiator Design and Application in Polymerization. Macromolecular Chemistry and Physics, 2015, 216, 1653-1659.	1.1	2
67	A Straightforward Protocol for the Highly Efficient Preparation of Main-Chain Azo Polymers Directly from Bisnitroaromatic Compounds by the Photocatalytic Process. Macromolecules, 2015, 48, 1289-1295.	2.2	26
68	Facile synthesis of well-defined redox responsive diselenide-labeled polymers via organoselenium-mediated CRP and aminolysis. Polymer Chemistry, 2015, 6, 1367-1372.	1.9	30
69	Diselenocarbamates, novel initiators in ATRP of styrene. Journal of Polymer Science Part A, 2015, 53, 1927-1933.	2.5	2
70	Diselenide mediated controlled radical polymerization under visible light irradiation: mechanism investigation and $\hat{l}\pm, \hat{l}\%$ -ditelechelic polymers. Polymer Chemistry, 2015, 6, 6416-6423.	1.9	17
71	Branched polystyrene with high reflex index synthesized from selenium-mediated polymerization. Journal of Polymer Science Part A, 2014, 52, 504-510.	2.5	26
72	Photo-induced cobalt-mediated radical polymerization of vinyl acetate. Polymer Chemistry, 2014, 5, 551-557.	1.9	43

#	Article	IF	CITATIONS
73	Reversible deactivation radical polymerization in the presence of zero-valent metals: from components to precise polymerization. Polymer Chemistry, 2014, 5, 3533-3546.	1.9	33
74	Initiator-chain transfer agent combo in the RAFT polymerization of styrene. Chemical Communications, 2014, 50, 9722-9724.	2.2	6
7 5	Zero-valent metal catalyzed removal of thiocarbonylthio end groups from RAFT-made polystyrene: producing controllable bimodal molecular weight distribution. Polymer Chemistry, 2014, 5, 1992-1998.	1.9	6
76	Fluorescence emission of amphiphilic copolymers bearing benzimidazole groups: Stimuli-responsive behaviors in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 4459-4466.	2.5	5
77	Seleniumâ€substituted carbonates as mediators for controlled radical polymerization. Journal of Polymer Science Part A, 2013, 51, 2606-2613.	2.5	17
78	Reversible Photo- and Thermo-Responsive Block Copolymer Micelles Functionalized by NIPAM and Azobenzene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 193-199.	1.2	4
79	Highâ€Efficiency Preparation of Macrocyclic Polymers via a Circulatory Extraction–Cyclization Strategy. Macromolecular Chemistry and Physics, 2013, 214, 1107-1113.	1.1	8
80	Synthesis of high molecular weight and narrow molecular weight distribution poly(acrylonitrile) via RAFT polymerization. Journal of Polymer Science Part A, 2013, 51, 1197-1204.	2.5	24
81	Organoselenium compounds: development of a universal "living―free radical polymerization mediator. Polymer Chemistry, 2013, 4, 3453.	1.9	34
82	A cyclic seleniumâ€based reversible additionâ€fragmentation chain transfer agent mediated polymerization of vinyl acetate. Journal of Polymer Science Part A, 2013, 51, 1656-1663.	2.5	14
83	Developing a Synthetic Approach with Thermoregulated Phase-Transfer Catalysis: Facile Access to Metal-Mediated Living Radical Polymerization of Methyl Methacrylate in Aqueous/Organic Biphasic System. Macromolecules, 2013, 46, 2060-2066.	2.2	55
84	A Highâ€Efficiency Strategy for Synthesizing Cyclic Polymers of Methacryates in One Pot. Macromolecular Rapid Communications, 2013, 34, 1014-1019.	2.0	19
85	Synthesis of combâ€like block copolymer with poly(<i>N</i> à€isopropylacrylamide) backbone and poly(vinyl acetate) or poly(<i>N</i> à€vinylâ€2â€pyrrolidone) side chains by reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2013, 51, 2125-2130.	2.5	5
86	Selenoâ€containing poly(vinyl acetate) prepared by diselenocarbonatesâ€mediated controlled free radical polymerizations. Journal of Polymer Science Part A, 2013, 51, 3159-3165.	2.5	14
87	Favorable hydrogen bonding in room-temperature Cu(0)-mediated controlled radical polymerization of 4-vinylpyridine. Polymer Chemistry, 2012, 3, 2731.	1.9	17
88	<i>Cyclic</i> Sideâ€Chain Phenylazo Naphthalene Polymers: Enhanced Fluorescence Emission and Surface Relief Grating Formation. Macromolecular Rapid Communications, 2012, 33, 1845-1851.	2.0	27
89	Ligandâ€free Cu(0)â€mediated controlled radical polymerization of methyl methacrylate at ambient temperature. Journal of Polymer Science Part A, 2012, 50, 711-719.	2.5	20
90	New seleniumâ€based iniferter agent for living free radical polymerization of styrene under UV irradiation. Journal of Polymer Science Part A, 2012, 50, 2211-2218.	2.5	32

#	Article	IF	Citations
91	Synthesis of novel sideâ€chain triphenylamine polymers with azobenzene moieties via RAFT polymerization and investigation on their photoelectric properties. Journal of Polymer Science Part A, 2012, 50, 3788-3796.	2.5	14
92	Polymerâ€Grafted Modification of Activated Carbon by Surfaceâ€Initiated AGET ATRP. Macromolecular Chemistry and Physics, 2012, 213, 868-877.	1.1	14
93	Controlled Bimodal Molecularâ€Weightâ€Distribution Polymers: Facile Synthesis by RAFT Polymerization. Chemistry - A European Journal, 2012, 18, 6015-6021.	1.7	14
94	60Co \hat{I}^3 -irradiation-initiated RAFT polymerization of VAc at room temperature. Reactive and Functional Polymers, 2012, 72, 153-159.	2.0	11
95	Catalytic amounts of sodium hydroxide as additives for iron-mediated AGET ATRP of MMA. Polymer Chemistry, 2011, 2, 2385.	1.9	37
96	Bifunctional Nanoparticles with Fluorescence and Magnetism via Surface-Initiated AGET ATRP Mediated by an Iron Catalyst. Langmuir, 2011, 27, 12684-12692.	1.6	77
97	Synthesis and Aggregation Behaviors of Nonlinear Multiresponsive, Multihydrophilic Block Copolymers. Macromolecules, 2011, 44, 3366-3373.	2.2	34
98	Synthesis and characters of hyperbranched poly(vinyl acetate) by RAFT polymeraztion. European Polymer Journal, 2011, 47, 1912-1922.	2.6	28
99	Iron(III)â€Mediated AGET ATRP of Methyl Methacrylate Using Vitamin C Sodium Salt as a Reducing Agent. Macromolecular Chemistry and Physics, 2011, 212, 1481-1488.	1.1	16
100	Cyclic Polymers with Pendent Carbazole Units: Enhanced Fluorescence and Redox Behavior. Angewandte Chemie - International Edition, 2011, 50, 6615-6618.	7.2	88
101	Chlorodithiocarbamateâ€Mediated RAFT Polymerization: A Novel Synthetic Method for ATRP Macroinitiators. Macromolecular Reaction Engineering, 2010, 4, 264-271.	0.9	7
102	Synthesis and photoresponsive behavior of the high-Tg azobenzene polymers via RAFT polymerization. Reactive and Functional Polymers, 2010, 70, 456-462.	2.0	35
103	Mechanism study and molecular design in controlled/"living―radical polymerization. Science China Chemistry, 2010, 53, 1605-1619.	4.2	6
104	SETâ€RAFT Polymerization of Progargyl Methacrylate and a Oneâ€Pot/Oneâ€Step Preparation of Sideâ€chain Functionalized Polymers <i>via</i> Combination of SETâ€RAFT and Click Chemistry. Macromolecular Rapid Communications, 2010, 31, 1354-1358.	2.0	40
105	The First Example of Mainâ€Chain Cyclic Azobenzene Polymers. Macromolecular Rapid Communications, 2010, 31, 1791-1797.	2.0	36
106	Synthesizing and characterization of comb-shaped carbazole containing copolymer via combination of ring opening polymerization and nitroxide-mediated polymerization. Polymer, 2010, 51, 1947-1953.	1.8	15
107	Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and "click―chemistry. Polymer, 2010, 51, 3083-3090.	1.8	39
108	Preparation of miktoarm starâ€block copolymers PS <i>_n via combination of ATRP and RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 5180-5188.</i>	2.5	8

#	Article	IF	CITATIONS
109	Zero-valent Iron/RAFT Agent-Mediated Polymerization of Methyl Methacrylate at Ambient Temperature. Macromolecules, 2010, 43, 7979-7984.	2.2	35
110	Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer. Polymer Chemistry, 2010, 1, 1453.	1.9	26
111	Soluble Main-Chain Azobenzene Polymers via Thermal 1,3-Dipolar Cycloaddition: Preparation and Photoresponsive Behavior. Macromolecules, 2010, 43, 2704-2712.	2.2	53
112	Facile synthesis of fluorescent ABA type amphiphilic triblock copolymers via RAFT polymerization and their aggregation behavior in a selective solvent. E-Polymers, 2009, 9, .	1.3	2
113	Preparation and characterization of poly(styrene)/metal composites via reversible addition-fragmentation chain transfer (RAFT) polymerization. Reactive and Functional Polymers, 2009, 69, 55-61.	2.0	13
114	Synthesis of fluorescent poly(methyl methacrylate) via AGET ATRP. Polymer Bulletin, 2009, 63, 355-364.	1.7	22
115	Synthesis and characterization of AB2-type star polymers via combination of ATRP and click chemistry. Polymer Bulletin, 2009, 63, 467-483.	1.7	18
116	Iron(III)â€mediated AGET ATRP of styrene using tris(3,6â€dioxaheptyl)amine as a ligand. Journal of Polymer Science Part A, 2009, 47, 2002-2008.	2.5	61
117	Raft polymerization of MMA in the presence of ferrocene: A new way to realize the rate enhancement. Journal of Polymer Science Part A, 2009, 47, 3607-3615.	2.5	5
118	Synthesis of miktoarm star amphiphilic block copolymers via combination of NMRP and ATRP and investigation on selfâ€assembly behaviors. Journal of Polymer Science Part A, 2009, 47, 6304-6315.	2.5	39
119	Single electron transferâ€iving radical polymerization of methyl methacrylate in fluoroalcohol: Dual control over molecular weight and tacticity. Journal of Polymer Science Part A, 2009, 47, 6316-6327.	2.5	51
120	Controlled synthesis of pHâ€responsive amphiphilic A ₂ B ₂ miktoarm star block copolymer by combination of SET‣RP and RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 6908-6918.	2. 5	48
121	Light-driven fluorescence enhancement of phenylazo indazole-terminated polystyrene. European Polymer Journal, 2009, 45, 2131-2137.	2.6	19
122	RAFT polymerization of styrene mediated by naphthalene-containing RAFT agents and optical properties of the polymers. Polymer, 2009, 50, 4352-4362.	1.8	6
123	Preparation and characterization of novel main-chain azobenzene polymers via step-growth polymerization based on click chemistry. Polymer, 2009, 50, 4512-4519.	1.8	29
124	A combination of RAFT and "Click―chemistry techniques to synthesize polymeric europium complexes with selective fluorescence emission. Reactive and Functional Polymers, 2009, 69, 240-245.	2.0	31
125	RAFT Polymerization of Styrene Mediated by Ferrocenyl-Containing RAFT Agent and Properties of the Polymer Derived from Ferrocene. Macromolecules, 2009, 42, 3898-3905.	2.2	25
126	Single-Electron Transfer Living Radical Polymerization (SETâ^'LRP) of Methyl Methacrylate (MMA) with a Typical RAFT Agent as an Initiator. Macromolecules, 2009, 42, 7360-7366.	2.2	69

#	Article	IF	CITATIONS
127	Synthesis and characterization of novel copolymer containing pyridylazo-2-naphthoxyl group via reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer, 2008, 49, 3048-3053.	1.8	12
128	Reversible addition–fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer, 2008, 49, 5431-5438.	1.8	11
129	Synthesis of tetrazoleâ€containing azo polymers with properties of photoâ€induced birefringence and surfaceâ€reliefâ€gratings via RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 682-691.	2.5	12
130	Synthesis of novel threeâ€arm star azo sideâ€chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. Journal of Polymer Science Part A, 2008, 46, 777-789.	2.5	29
131	A novel azoâ€containing dithiocarbamate used for living radical polymerization of methyl acrylate and styrene. Journal of Polymer Science Part A, 2008, 46, 5626-5637.	2.5	17
132	Synthesis of azobenzeneâ€containing polymers via RAFT polymerization and investigation on intense fluorescence from aggregates of azobenzeneâ€containing amphiphilic diblock copolymers. Journal of Polymer Science Part A, 2008, 46, 5652-5662.	2.5	43
133	Synthesis and characterization of fluorescence end″abeled polystyrene via reversible additionâ€fragmentation chain transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2008, 46, 6198-6205.	2.5	15
134	Synthesis and self-assembly behaviors of three-armed amphiphilic block copolymers via RAFT polymerization. Polymer, 2008, 49, 4569-4575.	1.8	32
135	Synthesis of poly(vinyl acetate) with fluorescence via a combination of RAFT/MADIX and "click― chemistry. European Polymer Journal, 2008, 44, 1789-1795.	2.6	47
136	Controlled synthesis and fluorescent properties of poly(9-(4-vinylbenzyl)-9H-carbazole) via nitroxide-mediated living free-radical polymerization. European Polymer Journal, 2008, 44, 3300-3305.	2.6	36
137	Synthesis and characterizations of 1,2,3-triazole containing polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. European Polymer Journal, 2008, 44, 1743-1751.	2.6	16
138	Preparation of azobenzene-terminated polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. E-Polymers, 2008, 8, .	1.3	3
139	Synthesis and characterization of triphenylamine and Bbis(indolyl)methane center-functionalized polymer via reversible addition-fragmentation chain transfer polymerization. E-Polymers, 2008, 8, .	1.3	3
140	RAFT Polymerization of Styrene in the Presence of 2â€Nonylâ€benzoimidazoleâ€1â€carbodithioic Acid Benzyl Ester. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 315-320.	1.2	8
141	Synthesis and Photoresponsive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization. Macromolecules, 2007, 40, 4809-4817.	2.2	59
142	Synthesis and photoinduced surfaceâ€relief grating of wellâ€defined azoâ€containing polymethacrylates via atom transfer radical polymerization. Journal of Applied Polymer Science, 2007, 106, 1234-1242.	1.3	10
143	Influence of the chemical structure of dithiocarbamates with different R groups on the reversible addition-fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2007, 103, 982-988.	1.3	14
144	"Livingâ€Icontrolled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. Journal of Applied Polymer Science, 2007, 103, 1769-1775.	1.3	11

#	Article	IF	CITATIONS
145	2-oxo-tetrahydrofuran-3-yl 9H-carbazole-9-carbodithioate mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Journal of Applied Polymer Science, 2007, 104, 2913-2918.	1.3	4
146	Atom transfer radical polymerizations of methyl methacrylate and styrene with an iniferter reagent as the initiator. Journal of Applied Polymer Science, 2007, 106, 230-237.	1.3	17
147	Reversible addition–fragmentation chain transfer polymerization of styrene using a novel thiophene dithioester as the reversible addition–fragmentation chain transfer agent. Journal of Applied Polymer Science, 2007, 105, 2357-2362.	1.3	2
148	A Novel Synthetic Method for Well-Defined Polymers Containing Benzotriazole and Diazobenzene Chromophores. Macromolecular Chemistry and Physics, 2007, 208, 1101-1109.	1.1	9
149	Synthesis of polystyrene end-capped with pyrene via reversible addition–fragmentation chain transfer polymerization. Polymer, 2007, 48, 1255-1260.	1.8	31
150	Reversible addition–fragmentation chain transfer polymerization of 7-(4-(acryloyloxy)butoxy)coumarin. Polymer, 2007, 48, 5859-5866.	1.8	20
151	Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry. Polymer, 2007, 48, 6992-6999.	1.8	77
152	Synthesis of dithiocarbamate bearing azobenzene group and use for RAFT polymerization of vinyl monomers. Journal of Polymer Science Part A, 2007, 45, 2886-2896.	2.5	15
153	Preparation, characterization, and chiral recognition of optically active polymers containing pendent chiral units via reversible additionâ€fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 3788-3797.	2.5	32
154	Synthesis of amphiphilic and thermosensitive graft copolymers with fluorescence P(Stâ€ <i>co</i> â€(pâ€CMS))â€ <i>g</i> â€PNIPAAM by combination of NMP and RAFT methods. Journal of Polym Science Part A, 2007, 45, 5318-5328.	ne :2. 5	37
155	"Livingâ€∮controlled free radical polymerization of MMA in the presence of cobalt(II) 2â€ethylhexanoate: A switch from RAFT to ATRP mechanism. Journal of Polymer Science Part A, 2007, 45, 5722-5730.	2.5	32
156	Reversible addition–fragmentation chain transfer (RAFT) polymerization of styrene in the presence of oxygen. Polymer, 2007, 48, 4393-4400.	1.8	20
157	Microwave-assisted nitroxide-mediated miniemulsion polymerization of styrene. Radiation Physics and Chemistry, 2007, 76, 23-26.	1.4	36
158	Synthesis and Characterization of Polymers Containing Azobenzene Chromophoric Group by ATRP. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 393-403.	1.2	7
159	New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2006, 44, 2912-2921.	2.5	26
160	Thermal-initiated reversible addition–fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen. Journal of Polymer Science Part A, 2006, 44, 3343-3354.	2.5	60
161	Reversible addition–fragmentation chain transfer polymerization of styrene under microwave irradiation. Journal of Polymer Science Part A, 2006, 44, 6810-6816.	2.5	55
162	Atom transfer radical polymerization of styrene using the novel initiator ethyl 2-N,N-(diethylamino)dithiocarbamoyl-butyrate. Journal of Polymer Science Part A, 2006, 44, 32-41.	2.5	27

#	Article	IF	CITATIONS
163	Synthesis of well-defined naphthalene and photo-labile group-labeled polystyrene via ATRP. Journal of Polymer Science Part A, 2006, 44, 510-518.	2.5	18
164	Iron-mediated atom transfer radical polymerization of styrene with tris(3,6-dioxaheptyl) amine as a ligand. Journal of Polymer Science Part A, 2006, 44, 483-489.	2.5	33
165	Preparation and characterization of optically active polystyrene via a chiral nitroxide-mediated polymerization. Journal of Polymer Science Part A, 2006, 44, 1522-1528.	2.5	12
166	Preparation and characterization of optically active polymers containing pendent and terminal chiral units via atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1502-1513.	2.5	15
167	Thermal polymerization of methyl (meth)acrylate via reversible addition-fragmentation chain transfer (RAFT) process. Polymer, 2006, 47, 6970-6977.	1.8	25
168	Microwave-assisted nitroxide-mediated radical polymerization of styrene. Radiation Physics and Chemistry, 2006, 75, 253-258.	1.4	49
169	Reversible Addition Fragmentation Chain Transfer (RAFT) Emulsion Polymerization of Methyl Methacrylate via a Plasma-initiated Process. Polymer Bulletin, 2006, 56, 539-548.	1.7	13
170	Preparation and Characterization of Anthracene End-Capped Polystyrene via Reversible Addition-Fragmentation Chain Transfer Polymerization. Polymer Bulletin, 2006, 57, 491-498.	1.7	22
171	Controlled/living radical polymerization of methyl methacrylate using \hat{l}^3 -radiation as an initiation source. Radiation Physics and Chemistry, 2006, 75, 485-492.	1.4	18
172	Synthesis of 1,3-benzodioxole end-functionalized polymers via reversible addition–fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2006, 99, 3535-3539.	1.3	10
173	Reversible addition–fragmentation chain transfer polymerization of styrene with benzoimidazole dithiocarbamate as a reversible addition–fragmentation chain transfer agent. Journal of Applied Polymer Science, 2006, 100, 560-564.	1.3	15
174	Atom transfer radical polymerization of styrene with 2-(1-bromoethyl)-anthraquinone as an initiator. Journal of Applied Polymer Science, 2006, 102, 2081-2085.	1.3	4
175	Synthesis of Well-defined Carbazole Group Labelled Polymer via RAFT Polymerization and Study on the Optical Properties. E-Polymers, 2006, 6, .	1.3	3
176	Atom transfer radical polymerization of styrene under pulsed microwave irradiation. Radiation Physics and Chemistry, 2005, 72, 695-701.	1.4	53
177	Reversible addition–fragmentation chain transfer polymerization of styrene initiated by tetraethylthiuram disulfide. Polymer, 2005, 46, 3515-3521.	1.8	9
178	ATRP and their self-assembly in selective solvents. Polymer, 2005, 46, 7563-7571.	1.8	38
179	Homogeneous reverse atom transfer radical polymerization of glycidyl methacrylate and ring-opening reaction of the pendant oxirane ring. Polymer, 2005, 46, 12716-12721.	1.8	41
180	Polymerization of styrene with tetramethylthiuram disulfide as an initiator in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy. Journal of Polymer Science Part A, 2005, 43, 543-551.	2.5	5

#	Article	IF	CITATIONS
181	Azobenzene-based initiator for atom transfer radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 2005, 43, 2358-2367.	2.5	20
182	Reversible addition-fragmentation chain transfer polymerization of 2-naphthyl acrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. Journal of Polymer Science Part A, 2005, 43, 2632-2642.	2.5	21
183	Influence of the chemical structure of dithiocarbamates with differentN-groups on the reversible addition-fragmentation chain transfer polymerization of styrene. Journal of Polymer Science Part A, 2005, 43, 4849-4856.	2.5	38
184	Synthesis of a Wellâ€Defined Naphthaleneâ€Labeled Polystyrene via Atom Transfer Radical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 341-349.	1.2	8
185	"Livingâ€∤Controlled Free Radical Polymerization Usingbis(Thionaphthoyl) Disulfide as a Source of RAFT Agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 827-838.	1.2	11
186	Reversible addition-fragmentation chain transfer polymerization of glycidyl methacrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. Journal of Polymer Science Part A, 2004, 42, 2558-2565.	2.5	66
187	Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate using a New Catalyst, Copper(II)N,N′-Butyldithiocarbamate. Macromolecular Chemistry and Physics, 2004, 205, 806-813.	1.1	14
188	Plasma-Initiated Controlled/Living Radical Polymerization of Methyl Methacrylate in the Presence of 2-Cyanoprop-2-yl 1-dithionaphthalate(CPDN). Macromolecular Rapid Communications, 2004, 25, 818-824.	2.0	40
189	Study on reversible addition-fragmentation chain transfer (RAFT) polymerization of MMA in the presence of 2-cyanoprop-2-yl 1-dithiophenanthrenate (CPDPA). European Polymer Journal, 2004, 40, 743-749.	2.6	17
190	Reversible Addition Fragmentation Chain Transfer Polymerization of Isobutyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1059-1070.	1.2	6
191	Reverse Atom Transfer Radical Polymerization of Styrene Initiated by Tetramethylthiuram Disulfide/CuSCN/N,N,N′,N″,N″â€Pentamethyldiethylenetriamine in the Presence of Acetonitrile. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 49-61.	1.2	8
192	Emulsion polymerization of styrene under pulsed microwave irradiation. Journal of Applied Polymer Science, 2003, 89, 28-35.	1.3	33
193	Reverse atom transfer radical polymerization of methyl methacrylate with FeCl3/pyromellitic acid. European Polymer Journal, 2003, 39, 2161-2165.	2.6	46
194	Reversible Addition–Fragmentation Chainâ€Transfer Polymerization of Octadecyl Acrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 963-975.	1.2	17
195	Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Polymer, 2002, 43, 7037-7042.	1.8	85
196	Fabrication of multi-responsive photonic crystals based on selenium-containing copolymers. Polymer Chemistry, 0, , .	1.9	0
197	Controlling polymer molecular weight distributions by light through reversible additionâ€fragmentation chain transferâ€heteroâ€Diels–Alder click conjugation. Journal of Polymer Science, 0, , .	2.0	1