Hector Barajas-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3690501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of multimodality imaging in a patient with posterior left ventricular aneurysm and non-compaction: Review of the literature Journal of Nuclear Cardiology, 2022, 29, 1091-1099.	1.4	Ο
2	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
3	Left ventricular apical-basal muscle bundle. A marker of hypertrophic cardiomyopathy?. Archivos De Cardiolog�a De M�xico (English Ed Internet), 2022, 91, .	0.1	Ο
4	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace, 2022, 24, 1307-1367.	0.7	108
5	Expression of H _v 1 proton channels in myeloid-derived suppressor cells (MDSC) and its potential role in T cell regulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2104453119.	3.3	9
6	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm, 2022, 19, e1-e60.	0.3	78
7	Acacetin, a Potent Transient Outward Current Blocker, May Be a Novel Therapeutic for <i>KCND3</i> -Encoded Kv4.3 Gain-of-Function-Associated J-Wave Syndromes. Circulation Genomic and Precision Medicine, 2022, 15, .	1.6	10
8	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
9	Rings and ovoid heart: OCIR. A new cardiomyopathy? Family genetic findings and multimodality imaging analysis. A rare cardiac phenotype and review of the literature. Journal of Nuclear Cardiology, 2021, 28, 359-366.	1.4	0
10	Hypertension as a sequela in patients of SARS-CoV-2 infection. PLoS ONE, 2021, 16, e0250815.	1.1	47
11	Acquired Long QT Syndrome and Torsades de Pointes after Mitral Valve Replacement Surgery. Journal of Cardiac Arrhythmias, 2021, , 53-56.	0.1	1
12	Clinical and Functional Genetic Characterization of the Role of Cardiac Calcium Channel Variants in the Early Repolarization Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 680819.	1.1	6
13	BS10â€A carvedilol analogue, VKII-86, prevents hypokalaemia-induced ventricular arrhythmia through novel multi-channel effects. , 2021, , .		0
14	Overlap Arrhythmia Syndromes Resulting from Multiple Genetic Variations Studied in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 7108.	1.8	4
15	Common variants in <i>SCN10A</i> gene associated with Brugada syndrome. Human Molecular Genetics, 2021, 31, 157-165.	1.4	6
16	Frequency of Irritable Bowel Syndrome in Patients with Brugada Syndrome and Drug-Induced Type 1 Brugada Pattern. American Journal of Cardiology, 2021, 151, 51-56.	0.7	3
17	B-PO03-018 CLINICAL CHARACTERISTICS AND ELECTROPHYSIOLOGIC PROPERTIES OF SCN5A VARIANTS IN FEVER-INDUCED BRUGADA SYNDROME. Heart Rhythm, 2021, 18, S195-S196.	0.3	0
18	<i>MYH7</i> p.Glu903Gln Is a Pathogenic Variant Associated With Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003476.	1.6	4

#	Article	IF	CITATIONS
19	Novel polygenetic variants evidenced in a patient with Jervell and Lange-Nielsen syndrome. Cardiology Journal, 2021, 28, 786-789.	0.5	0
20	Intracellular uptake of agents that block the hERG channel can confound the assessment of QT interval prolongation and arrhythmic risk. Heart Rhythm, 2021, 18, 2177-2186.	0.3	2
21	Clinical characteristics, risk factors, and cardiac manifestations of cancer patients with COVID-19. Journal of Applied Physiology, 2021, 131, 966-976.	1.2	7
22	Abrogation of CC Chemokine Receptor 9 Ameliorates Ventricular Electrical Remodeling in Mice After Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2021, 8, 716219.	1.1	8
23	Distinct Features of Probands With Early Repolarization and Brugada Syndromes Carrying SCN5A Pathogenic Variants. Journal of the American College of Cardiology, 2021, 78, 1603-1617.	1.2	22
24	A carvedilol analogue, VKâ€IIâ€86, prevents hypokalaemiaâ€induced ventricular arrhythmia through novel multiâ€channel effects. British Journal of Pharmacology, 2021, , .	2.7	2
25	Susceptibility to Ventricular Arrhythmias Resulting from Mutations in <i>FKBP1B</i> , <i>PXDNL</i> , and <i>SCN9A</i> Evaluated in hiPSC Cardiomyocytes. Stem Cells International, 2020, 2020, 1-16.	1.2	11
26	The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2020, 76, 164-172.	0.8	10
27	Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine, 2020, 54, 102723.	2.7	19
28	Acacetin suppresses the electrocardiographic and arrhythmic manifestations of the J wave syndromes. PLoS ONE, 2020, 15, e0242747.	1.1	20
29	J Wave Syndromes: Brugada and Early Repolarization Syndromes. Contemporary Cardiology, 2020, , 745-774.	0.0	0
30	Association of the Vascular Endothelial Growth Factor Gene PolymorphismÂ+936ÂC/T with Diabetic Neuropathy in Patients with Type 2 Diabetes Mellitus. Archives of Medical Research, 2019, 50, 181-186.	1.5	5
31	Acquired short QT syndrome in a cancer patient treated with Toad. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 1273-1275.	0.5	5
32	Meta-Analysis of Risk Stratification of SCN5A With Brugada Syndrome: Is SCN5A Always a Marker of Low Risk?. Frontiers in Physiology, 2019, 10, 103.	1.3	14
33	Relation of the Brugada Phenocopy to Hyperkalemia (from the International Registry on Brugada) Tj ETQq1 1 0.7	′84314 rgl 0.7	3T <u>19</u> verloc <mark>k</mark>
34	A novel three base-pair deletion in domain two of the cardiac sodium channel causes Brugada syndrome. Journal of Electrocardiology, 2018, 51, 667-673.	0.4	1
35	Prevalence of spontaneous Brugada ECG pattern recorded at standard intercostal leads: A meta-analysis. International Journal of Cardiology, 2018, 254, 151-156.	0.8	23
36	Traditional Chinese Medicine Is Widely Used for Cardiovascular Disease. Cardiovascular Innovations and Applications, 2018, 3, .	0.1	0

#	Article	IF	CITATIONS
37	Gender Differences in Prognosis and Risk Stratification of Brugada Syndrome: A Pooled Analysis of 4,140 Patients From 24 Clinical Trials. Frontiers in Physiology, 2018, 9, 1127.	1.3	22
38	The Future Is Here: Experimental Models and Genetics in Brugada Phenocopy. , 2018, , 125-132.		0
39	Pooled Analysis of Risk Stratification of Spontaneous Type 1 Brugada ECG: Focus on the Influence of Gender and EPS. Frontiers in Physiology, 2018, 9, 1951.	1.3	14
40	The Phenotypic Spectrum of a MutationÂHotspot Responsible for theÂShort QT Syndrome. JACC: Clinical Electrophysiology, 2017, 3, 727-743.	1.3	58
41	Biophysical and molecular comparison of sodium current in cells isolated from canine atria and pulmonary vein. Pflugers Archiv European Journal of Physiology, 2017, 469, 703-712.	1.3	8
42	Atrial fibrillation associated with Wolff-Parkinson-White syndrome in a patient with concomitant Brugada syndrome. HeartRhythm Case Reports, 2017, 3, 13-17.	0.2	4
43	<i>SCN5A</i> Genetic Polymorphisms Associated With Increased Defibrillator Shocks in Brugada Syndrome. Journal of the American Heart Association, 2017, 6, .	1.6	25
44	Biophysical and Molecular Comparison of Sodium Current in Cells Isolated from Canine Atria and Pulmonary Vein. Biophysical Journal, 2017, 112, 233a-234a.	0.2	0
45	Novel trigenic CACNA1C/DES/MYPN mutations in a family of hypertrophic cardiomyopathy with early repolarization and short QT syndrome. Journal of Translational Medicine, 2017, 15, 78.	1.8	27
46	Comparative Effectiveness of Acupuncture and Antiarrhythmic Drugs for the Prevention of Cardiac Arrhythmias: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Frontiers in Physiology, 2017, 8, 358.	1.3	14
47	T Wave Safety Margin during the Process of ICD Implantation As a Novel Predictor of T Wave Oversensing. Frontiers in Physiology, 2017, 8, 659.	1.3	1
48	Genetics Bases of Cardiac Sodium Channel Mutations linked to Inherited Cardiac Arrhythmias. Journal of Human Growth and Development, 2016, 26, 277.	0.2	1
49	Neuronal Na _v 1.8 Channels as a Novel Therapeutic Target of Acute Atrial Fibrillation Prevention. Journal of the American Heart Association, 2016, 5, .	1.6	20
50	Ranolazine for Congenital Long-QT Syndrome Type III. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	56
51	TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. International Journal of Molecular Medicine, 2016, 38, 1403-1410.	1.8	23
52	Further Insights in the Most Common <i>SCN5A</i> Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. Journal of the American Heart Association, 2016, 5, .	1.6	46
53	Molecular and Functional Characterization of RareCACNA1CVariants in Sudden Unexplained Death in the Young. Congenital Heart Disease, 2016, 11, 683-692.	0.0	23
54	Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. International Journal of Cardiology, 2016, 207, 326-334.	0.8	23

#	Article	IF	CITATIONS
55	Cellular and ionic mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an experimental model of early repolarization syndrome. Heart Rhythm, 2016, 13, 1326-1334.	0.3	26
56	A Brugada syndrome proband with compound heterozygote <i>SCN5A</i> mutations identified from a Chinese family in Singapore. Europace, 2016, 18, 897-904.	0.7	16
57	A CACNA1C Variant Associated with Reduced Voltage-Dependent Inactivation, Increased CaV1.2 Channel Window Current, and Arrhythmogenesis. PLoS ONE, 2014, 9, e106982.	1.1	43
58	A temporal window of vulnerability for development of atrial fibrillation with advancing heart failure. European Journal of Heart Failure, 2014, 16, 271-280.	2.9	15
59	ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. International Journal of Cardiology, 2014, 171, 431-442.	0.8	113
60	Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome. Journal of the American College of Cardiology, 2014, 64, 66-79.	1.2	212
61	Ranolazine Effectively Suppresses Atrial Fibrillation in the Setting of Heart Failure. Circulation: Heart Failure, 2014, 7, 627-633.	1.6	34
62	Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. Journal of Molecular and Cellular Cardiology, 2014, 68, 20-28.	0.9	116
63	Electrophysiologic Characteristics and Pharmacologic Response of Human Cardiomyocytes Isolated from a Patient with Hypertrophic Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2013, 36, 1512-1515.	0.5	20
64	Effect of Wenxin Keli and quinidine to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Heart Rhythm, 2013, 10, 1054-1062.	0.3	48
65	Identification of a Novel De Novo Mutation Associated with PRKAG2 Cardiac Syndrome and Early Onset of Heart Failure. PLoS ONE, 2013, 8, e64603.	1.1	23
66	Brugada-Like Syndrome in Infancy Presenting With Rapid Ventricular Tachycardia and Intraventricular Conduction Delay. Circulation, 2012, 125, 14-22.	1.6	61
67	Atrial-selective Prolongation of Refractory Period With AVE0118 is Due Principally to Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2012, 59, 539-546.	0.8	21
68	About half of the late sodium current in cardiac myocytes from dog ventricle is due to non-cardiac-type Na+ channels. Journal of Molecular and Cellular Cardiology, 2012, 53, 593-598.	0.9	45
69	A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na 1.5 and K 4.3 channel currents. Heart Rhythm, 2012, 9, 760-769.	0.3	104
70	Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Heart Rhythm, 2012, 9, 125-131.	0.3	75
71	Torsades de pointes following acute myocardial infarction: Evidence for a deadly link with a common genetic variant. Heart Rhythm, 2012, 9, 1104-1112.	0.3	34
72	Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm, 2012, 9, 548-555.	0.3	152

#	Article	IF	CITATIONS
73	Immunostimulating Effect of Aqueous Extract of Amphypterygium Adstringens on Immune Cellular Response in Immunosuppressed Mice. Tropical Journal of Obstetrics and Gynaecology, 2012, 10, 35-9.	0.3	6
74	Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants. Journal of Cardiovascular Electrophysiology, 2012, 23, 423-432.	0.8	44
75	Maximum Diastolic Potential of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Depends Critically on IKr. PLoS ONE, 2012, 7, e40288.	1.1	144
76	Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). European Heart Journal, 2011, 32, 1077-1088.	1.0	178
77	LQT5 masquerading as LQT2: a dominant negative effect of KCNE1-D85N rare polymorphism on KCNH2 current. Europace, 2011, 13, 1478-1483.	0.7	21
78	Biophysical and Molecular Characterization of a Novel De Novo <i>KCNJ2</i> Mutation Associated With Andersen-Tawil Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia Mimicry. Circulation: Cardiovascular Genetics, 2011, 4, 51-57.	5.1	31
79	Mechanisms of atrial-selective block of Na ⁺ channels by ranolazine: I. Experimental analysis of the use-dependent block. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1606-H1614.	1.5	56
80	Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants. Journal of Arrhythmia, 2011, 27, CP2_01.	0.5	0
81	Mutations in the Cardiac L-Type Calcium Channel Associated with Inherited Sudden Cardiac Death Syndromes. Heart Rhythm, 2010, 7, 1719.	0.3	5
82	Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 2010, 7, 1872-1882.	0.3	387
83	A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated With Brugada ECG Phenotype. Circulation: Cardiovascular Genetics, 2009, 2, 270-278.	5.1	232
84	Compound Heterozygous Mutations P336L and I1660V in the Human Cardiac Sodium Channel Associated With the Brugada Syndrome. Circulation, 2006, 114, 2026-2033.	1.6	102
85	Clinical Characteristics, Risk Factors and Cardiac Manifestations of Cancer Patients with COVID-19. SSRN Electronic Journal, 0, , .	0.4	0