Virpi Talman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3689695/publications.pdf

Version: 2024-02-01

516215 414034 1,457 36 16 32 citations h-index g-index papers 39 39 39 2538 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell and Tissue Research, 2016, 365, 563-581.	1.5	617
2	Cardiomyocyteâ€"Endothelial Cell Interactions in Cardiac Remodeling and Regeneration. Frontiers in Cardiovascular Medicine, 2018, 5, 101.	1.1	113
3	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	5.2	82
4	Molecular Atlas of Postnatal Mouse Heart Development. Journal of the American Heart Association, 2018, 7, e010378.	1.6	65
5	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	7.8	60
6	Design, Synthesis, and Biological Activity of Isophthalic Acid Derivatives Targeted to the C1 Domain of Protein Kinase C. Journal of Medicinal Chemistry, 2009, 52, 3969-3981.	2.9	55
7	Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Visionâ€like Proteins?. Basic and Clinical Pharmacology and Toxicology, 2016, 119, 149-160.	1.2	49
8	Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices. Lab on A Chip, 2020, 20, 2372-2382.	3.1	49
9	Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. Journal of Medicinal Chemistry, 2017, 60, 7781-7798.	2.9	46
10	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	2.8	42
11	Current Status and Future Prospects of C1 Domain Ligands as Drug Candidates. Current Topics in Medicinal Chemistry, 2011, 11, 1370-1392.	1.0	39
12	The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCî± activation in SH-SY5Y cells. Pharmacological Research, 2013, 73, 44-54.	3.1	28
13	Screening of natural compounds and their derivatives as potential protein kinase C inhibitors. Drug Development Research, 2004, 63, 76-87.	1.4	26
14	Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds. Archives of Toxicology, 2018, 92, 2897-2911.	1.9	26
15	C1 Domain-Targeted Isophthalate Derivatives Induce Cell Elongation and Cell Cycle Arrest in HeLa Cells. PLoS ONE, 2011, 6, e20053.	1.1	24
16	Synthesis, Identification, and Structure–Activity Relationship Analysis of GATA4 and NKX2-5 Protein–Protein Interaction Modulators. Journal of Medicinal Chemistry, 2019, 62, 8284-8310.	2.9	18
17	GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo: establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Archives of Toxicology, 2020, 94, 2113-2130.	1.9	18
18	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	7.8	13

#	Article	IF	CITATIONS
19	Evidence for a role of MRCK in mediating HeLa cell elongation induced by the C1 domain ligand HMI-1a3. European Journal of Pharmaceutical Sciences, 2014, 55, 46-57.	1.9	10
20	Anticancer activity of the protein kinase C modulator HMI â€1a3 in 2D and 3D cell culture models of androgenâ€responsive and androgenâ€unresponsive prostate cancer. FEBS Open Bio, 2018, 8, 817-828.	1.0	9
21	Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C. PLoS ONE, 2018, 13, e0195668.	1.1	8
22	Missing Selectivity of Targeted $4\hat{l}^2$ -Phorbol Prodrugs Expected to be Potential Chemotherapeutics. ACS Medicinal Chemistry Letters, 2020, 11, 671-677.	1.3	8
23	Pharmacological Protein Kinase C Modulators Reveal a Pro-hypertrophic Role for Novel Protein Kinase C Isoforms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Pharmacology, 2020, $11,553852$.	1.6	8
24	Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cellâ€derived cardiomyocytes. Journal of Physiology, 2022, 600, 483-507.	1.3	8
25	Stereoselective synthesis of (3-aminodecahydro-1,4-methanonaphthalen-2-yl)methanols targeted to the C1 domain of protein kinase C. Tetrahedron, 2011, 67, 8665-8670.	1.0	7
26	Distinct regulation of cardiac fibroblast proliferation and transdifferentiation by classical and novel protein kinase C isoforms: possible implications for new antifibrotic therapies. Molecular Pharmacology, 2020, 99, MOLPHARM-AR-2020-000094.	1.0	7
27	C1 domain-targeted isophthalates as protein kinase C modulators: structure-based design, structure–activity relationships and biological activities. Biochemical Society Transactions, 2014, 42, 1543-1549.	1.6	6
28	Beyond the affinity for protein kinase C: exploring 2-phenyl-3-hydroxypropyl pivalate analogues as C1 domain-targeting ligands. MedChemComm, 2015, 6, 547-554.	3.5	6
29	Rigorous Computational Study Reveals What Docking Overlooks: Double Trouble from Membrane Association in Protein Kinase C Modulators. Journal of Chemical Information and Modeling, 2020, 60, 5624-5633.	2.5	6
30	Protein kinase A Mediated Effects of Protein kinase C Partial Agonist HMI-1a3 in Colorectal Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2021, , JPET-AR-2021-000848.	1.3	2
31	Abstract 781: Doxorubicin-Induced Cardiotoxicity and Novel GATA4-Targeted Compounds. Circulation Research, 2019, 125, .	2.0	1
32	Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology. Methods in Molecular Biology, 2021, , 1.	0.4	0
33	Identification of cardiomyocyte-enriched long non-coding RNAs as potential targets for induction of cardiac regeneration. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-3-46.	0.0	0
34	Stem cells are the most sensitive screening tool to identify toxicity of GATA4- targeted small-molecule compounds. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-9-32.	0.0	0
35	Effects of the C1 domain-targeted PKC modulator HMI-1a3 on the viability of colon cancer cells in culture. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-10-15.	0.0	0
36	Abstract 924: The Role of Protein Kinase C Isoforms in Cardiomyocyte Hypertrophy. Circulation Research, 2019, 125, .	2.0	0