
## John Quackenbush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3689664/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Minimum information about a microarray experiment (MIAME)—toward standards for microarray<br>data. Nature Genetics, 2001, 29, 365-371.                      | 21.4 | 3,750     |
| 2  | Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature<br>Communications, 2014, 5, 4006.                          | 12.8 | 3,355     |
| 3  | Artificial intelligence in radiology. Nature Reviews Cancer, 2018, 18, 500-510.                                                                             | 28.4 | 1,953     |
| 4  | Inconsistency in large pharmacogenomic studies. Nature, 2013, 504, 389-393.                                                                                 | 27.8 | 467       |
| 5  | Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.<br>Nature, 2012, 487, 491-495.                            | 27.8 | 349       |
| 6  | Understanding Tissue-Specific Gene Regulation. Cell Reports, 2017, 21, 1077-1088.                                                                           | 6.4  | 314       |
| 7  | Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer. Cancer Research, 2017, 77, 3922-3930.                                                   | 0.9  | 307       |
| 8  | Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology. Frontiers in Oncology, 2016, 6, 71.                                          | 2.8  | 306       |
| 9  | A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes. Journal of the National<br>Cancer Institute, 2012, 104, 311-325.                  | 6.3  | 272       |
| 10 | Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction.<br>Journal of Clinical Investigation, 2013, 123, 5212-5230. | 8.2  | 266       |
| 11 | Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.                                                                   | 8.8  | 258       |
| 12 | Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E14-E16.                                                                    | 27.8 | 233       |
| 13 | Sex Differences in Gene Expression and Regulatory Networks across 29 Human Tissues. Cell Reports, 2020, 31, 107795.                                         | 6.4  | 207       |
| 14 | Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in<br>mice. Nature Medicine, 2016, 22, 163-174.                   | 30.7 | 206       |
| 15 | Passing Messages between Biological Networks to Refine Predicted Interactions. PLoS ONE, 2013, 8, e64832.                                                   | 2.5  | 183       |
| 16 | Molecular networks in Network Medicine: Development and applications. Wiley Interdisciplinary<br>Reviews: Systems Biology and Medicine, 2020, 12, e1489.    | 6.6  | 128       |
| 17 | Estimating Sample-Specific Regulatory Networks. IScience, 2019, 14, 226-240.                                                                                | 4.1  | 120       |
| 18 | Data Analysis Strategies in Medical Imaging. Clinical Cancer Research, 2018, 24, 3492-3499.                                                                 | 7.0  | 115       |

JOHN QUACKENBUSH

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive<br>Pulmonary Disease and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical<br>Care Medicine, 2016, 194, 948-960. | 5.6  | 110       |
| 20 | GeneSigDB: a manually curated database and resource for analysis of gene expression signatures.<br>Nucleic Acids Research, 2012, 40, D1060-D1066.                                                                                        | 14.5 | 108       |
| 21 | Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian<br>Cancer. PLoS ONE, 2012, 7, e30269.                                                                                                  | 2.5  | 107       |
| 22 | MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Medicine, 2013, 5, 2.                                                                                               | 8.2  | 96        |
| 23 | Extracting meaning from functional genomics experiments. Toxicology and Applied Pharmacology, 2005, 207, 195-199.                                                                                                                        | 2.8  | 90        |
| 24 | Enhancing Reproducibility in Cancer Drug Screening: How Do We Move Forward?. Cancer Research, 2014, 74, 4016-4023.                                                                                                                       | 0.9  | 90        |
| 25 | Seeded Bayesian Networks: Constructing genetic networks from microarray data. BMC Systems<br>Biology, 2008, 2, 57.                                                                                                                       | 3.0  | 86        |
| 26 | Exploring regulation in tissues with eQTL networks. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7841-E7850.                                                                             | 7.1  | 82        |
| 27 | Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism.<br>Cancer Research, 2018, 78, 5538-5547.                                                                                             | 0.9  | 81        |
| 28 | Revisiting inconsistency in large pharmacogenomic studies. F1000Research, 2016, 5, 2333.                                                                                                                                                 | 1.6  | 79        |
| 29 | Smooth quantile normalization. Biostatistics, 2018, 19, 185-198.                                                                                                                                                                         | 1.5  | 78        |
| 30 | Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Scientific Reports, 2017, 7, 44232.                                        | 3.3  | 76        |
| 31 | DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics, 2016, 11, 730-739.                                                                                                                    | 2.7  | 73        |
| 32 | Gender-Specific Molecular and Clinical Features Underlie Malignant Pleural Mesothelioma. Cancer<br>Research, 2016, 76, 319-328.                                                                                                          | 0.9  | 73        |
| 33 | Genome-Wide Sex and Gender Differences in Cancer. Frontiers in Oncology, 2020, 10, 597788.                                                                                                                                               | 2.8  | 64        |
| 34 | Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Medicine, 2015, 7, 12.                                                                         | 8.2  | 61        |
| 35 | A network model for angiogenesis in ovarian cancer. BMC Bioinformatics, 2015, 16, 115.                                                                                                                                                   | 2.6  | 60        |
| 36 | Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required<br>for Transformation. PLoS Pathogens, 2016, 12, e1006020.                                                                             | 4.7  | 60        |

John Quackenbush

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio, 2018, 9, .                                                                          | 4.1  | 57        |
| 38 | Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary<br>Disease Genome-Wide Association Loci. American Journal of Respiratory and Critical Care Medicine,<br>2018, 197, 1275-1284. | 5.6  | 56        |
| 39 | Regulatory network changes between cell lines and their tissues of origin. BMC Genomics, 2017, 18, 723.                                                                                                                        | 2.8  | 51        |
| 40 | Cancer subtype identification using somatic mutation data. British Journal of Cancer, 2018, 118, 1492-1501.                                                                                                                    | 6.4  | 51        |
| 41 | BatchQC: interactive software for evaluating sample and batch effects in genomic data.<br>Bioinformatics, 2016, 32, 3836-3838.                                                                                                 | 4.1  | 50        |
| 42 | Bipartite Community Structure of eQTLs. PLoS Computational Biology, 2016, 12, e1005033.                                                                                                                                        | 3.2  | 50        |
| 43 | Sexually-dimorphic targeting of functionally-related genes in COPD. BMC Systems Biology, 2014, 8, 118.                                                                                                                         | 3.0  | 47        |
| 44 | WebMeV: A Cloud Platform for Analyzing and Visualizing Cancer Genomic Data. Cancer Research, 2017, 77, e11-e14.                                                                                                                | 0.9  | 47        |
| 45 | Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data. BMC Bioinformatics, 2017, 18, 437.                                                                                                        | 2.6  | 45        |
| 46 | Extracting biology from high-dimensional biological data. Journal of Experimental Biology, 2007, 210,<br>1507-1517.                                                                                                            | 1.7  | 44        |
| 47 | Genetic control of gene expression at novel and established chronic obstructive pulmonary disease<br>loci. Human Molecular Genetics, 2015, 24, 1200-1210.                                                                      | 2.9  | 43        |
| 48 | Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCI Insight, 2016, 1, .                                                                                                  | 5.0  | 42        |
| 49 | Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics, 2014, 103, 329-336.                                                                                        | 2.9  | 40        |
| 50 | Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools. Biochimica Et Biophysica<br>Acta - Gene Regulatory Mechanisms, 2020, 1863, 194418.                                                                   | 1.9  | 39        |
| 51 | <i>Paenibacillus</i> infection with frequent viral coinfection contributes to postinfectious hydrocephalus in Ugandan infants. Science Translational Medicine, 2020, 12, .                                                     | 12.4 | 39        |
| 52 | Plasma Exosome Profiling of Cancer Patients by a Next Generation Systems Biology Approach.<br>Scientific Reports, 2017, 7, 42741.                                                                                              | 3.3  | 38        |
| 53 | An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets. Journal of Hematology and Oncology, 2017, 10, 107.                       | 17.0 | 38        |
| 54 | Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1250-1258.                                                       | 2.9  | 35        |

John Quackenbush

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Human Genomics, 2018, 12, 1.                                                                                             | 2.9  | 35        |
| 56 | The Impact of Stroma Admixture on Molecular Subtypes and Prognostic Gene Signatures in Serous<br>Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 509-519.                                                        | 2.5  | 34        |
| 57 | Assessment of pharmacogenomic agreement. F1000Research, 2016, 5, 825.                                                                                                                                                                     | 1.6  | 34        |
| 58 | Detecting phenotype-driven transitions in regulatory network structure. Npj Systems Biology and Applications, 2018, 4, 16.                                                                                                                | 3.0  | 32        |
| 59 | Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Systems Biology, 2014, 8, 78.                                                                                                             | 3.0  | 31        |
| 60 | GRAND: a database of gene regulatory network models across human conditions. Nucleic Acids<br>Research, 2022, 50, D610-D621.                                                                                                              | 14.5 | 31        |
| 61 | BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2–RAD52. Nature, 2021, 591, 665-670.                                                                                                                                 | 27.8 | 30        |
| 62 | Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell<br>Differentiation. Cell Reports, 2016, 14, 1181-1194.                                                                                             | 6.4  | 29        |
| 63 | Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators. BMC Systems Biology, 2015, 9, 80.                                                                                        | 3.0  | 27        |
| 64 | lionessR: single sample network inference in R. BMC Cancer, 2019, 19, 1003.                                                                                                                                                               | 2.6  | 26        |
| 65 | Using graph convolutional neural networks to learn a representation for glycans. Cell Reports, 2021, 35, 109251.                                                                                                                          | 6.4  | 25        |
| 66 | Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. British<br>Journal of Cancer, 2020, 122, 569-577.                                                                                               | 6.4  | 22        |
| 67 | Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes. Nature Communications, 2018, 9, 1219.                                                                                        | 12.8 | 20        |
| 68 | Histopathological Image QTL Discovery of Immune Infiltration Variants. IScience, 2018, 5, 80-89.                                                                                                                                          | 4.1  | 19        |
| 69 | Differentiating progressive from nonprogressive T1 bladder cancer by gene expression profiling:<br>Applying RNA-sequencing analysis on archived specimens. Urologic Oncology: Seminars and Original<br>Investigations, 2014, 32, 327-336. | 1.6  | 18        |
| 70 | Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC<br>Bioinformatics, 2017, 18, 304.                                                                                                                   | 2.6  | 18        |
| 71 | Estimating drivers of cell state transitions using gene regulatory network models. BMC Systems<br>Biology, 2017, 11, 139.                                                                                                                 | 3.0  | 17        |
| 72 | PUMA: PANDA Using MicroRNA Associations. Bioinformatics, 2020, 36, 4765-4773.                                                                                                                                                             | 4.1  | 17        |

JOHN QUACKENBUSH

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tumor associated seizures in glioblastomas are influenced by survival gene expression in a region-specific manner: A gene expression imaging study. Epilepsy Research, 2014, 108, 843-852.                           | 1.6 | 15        |
| 74 | PyPanda: a Python package for gene regulatory network reconstruction. Bioinformatics, 2016, 32, 3363-3365.                                                                                                           | 4.1 | 15        |
| 75 | Estimating gene regulatory networks with pandaR. Bioinformatics, 2017, 33, 2232-2234.                                                                                                                                | 4.1 | 15        |
| 76 | DNA Methylation Is Predictive of Mortality in Current and Former Smokers. American Journal of<br>Respiratory and Critical Care Medicine, 2020, 201, 1099-1109.                                                       | 5.6 | 15        |
| 77 | Regulatory Network of PD1 Signaling Is Associated with Prognosis in Glioblastoma Multiforme.<br>Cancer Research, 2021, 81, 5401-5412.                                                                                | 0.9 | 15        |
| 78 | Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers<br>and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes. Kidney360, 2020, 1,<br>731-739. | 2.1 | 15        |
| 79 | Constructing gene regulatory networks using epigenetic data. Npj Systems Biology and Applications, 2021, 7, 45.                                                                                                      | 3.0 | 14        |
| 80 | Comparative genome-wide transcriptional analysis of human left and right internal mammary arteries.<br>Genomics, 2014, 104, 36-44.                                                                                   | 2.9 | 13        |
| 81 | Diet-induced weight loss leads to a switch in gene regulatory network control in the rectal mucosa.<br>Genomics, 2016, 108, 126-133.                                                                                 | 2.9 | 13        |
| 82 | Expression Quantitative Trait loci (QTL) in tumor adjacent normal breast tissue and breast tumor tissue. PLoS ONE, 2017, 12, e0170181.                                                                               | 2.5 | 12        |
| 83 | Gene Targeting in Disease Networks. Frontiers in Genetics, 2021, 12, 649942.                                                                                                                                         | 2.3 | 11        |
| 84 | Using a Single Daytime Performance Test to Identify Most Individuals at High-Risk for Performance<br>Impairment during Extended Wake. Scientific Reports, 2019, 9, 16681.                                            | 3.3 | 9         |
| 85 | High-Throughput Sequencing in Respiratory, Critical Care, and Sleep Medicine Research. An Official<br>American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2019, 16, 1-16.            | 3.2 | 9         |
| 86 | MicroRNA-mRNA networks define translatable molecular outcome phenotypes in osteosarcoma.<br>Scientific Reports, 2020, 10, 4409.                                                                                      | 3.3 | 9         |
| 87 | Predicting genotype-specific gene regulatory networks. Genome Research, 2022, 32, 524-533.                                                                                                                           | 5.5 | 9         |
| 88 | High performance computing of gene regulatory networks using a message-passing model. , 2015, , .                                                                                                                    |     | 8         |
| 89 | Identification of differentially expressed gene sets using the Generalized Berk–Jones statistic.<br>Bioinformatics, 2019, 35, 4568-4576.                                                                             | 4.1 | 8         |
| 90 | Relevance of different prior knowledge sources for inferring gene interaction networks. Frontiers<br>in Genetics, 2014, 5, 177.                                                                                      | 2.3 | 7         |

JOHN QUACKENBUSH

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | An online notebook resource for reproducible inference, analysis and publication of gene regulatory networks. Nature Methods, 2022, 19, 511-513.                | 19.0 | 7         |
| 92  | Environmental Influences Measured by Epigenetic Clock and Vulnerability Components at Birth Impact<br>Clinical ASD Heterogeneity. Genes, 2021, 12, 1433.        | 2.4  | 3         |
| 93  | Multi-omic regulatory networks capture downstream effects of kinase inhibition in Mycobacterium tuberculosis. Npj Systems Biology and Applications, 2021, 7, 8. | 3.0  | 3         |
| 94  | Estimating Sample-Specific Regulatory Networks. SSRN Electronic Journal, 0, , .                                                                                 | 0.4  | 3         |
| 95  | Gene regulatory network inference as relaxed graph matching. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 10263-10272.              | 4.9  | 3         |
| 96  | Connectivity in eQTL networks dictates reproducibility and genomic properties. Cell Reports Methods, 2022, 2, 100218.                                           | 2.9  | 3         |
| 97  | Data, Analysis, and Standardization. , 0, , 215-229.                                                                                                            |      | 2         |
| 98  | Analysis of morphological characteristics of IDH-mutant/wildtype brain tumors using whole-lesion phenotype analysis. Neuro-Oncology Advances, 2021, 3, vdab088. | 0.7  | 2         |
| 99  | A Novel Deep Learning Model by Stacking Conditional Restricted Boltzmann Machine and Deep Neural Network. , 2020, , .                                           |      | 2         |
| 100 | Clustering Sparse Data With Feature Correlation With Application to Discover Subtypes in Cancer.<br>IEEE Access, 2020, 8, 67775-67789.                          | 4.2  | 1         |
| 101 | gpuZoo: Cost-effective estimation of gene regulatory networks using the Graphics Processing Unit.<br>NAR Genomics and Bioinformatics, 2022, 4, Iqac002.         | 3.2  | 1         |
| 102 | IEEE 7 <sup>th</sup> BIBE Invited Plenary Keynote: Stochasticity and Networks in Genomic<br>Data. , 2007, , .                                                   |      | 0         |
| 103 | Variance due to Smooth Bias in Rat Liver and Kidney Baseline Gene Expression in a Large<br>Multi-laboratory Data Set. , 0, , 87-99.                             |      | 0         |
| 104 | Using shRNA experiments to validate gene regulatory networks. Genomics Data, 2015, 4, 123-126.                                                                  | 1.3  | 0         |
| 105 | Data will Drive the Healthcare Revolution. , 2020, , .                                                                                                          |      | 0         |
| 106 | Al Methods for Analyzing Microarray Data. , 2009, , 65-70.                                                                                                      |      | 0         |
| 107 | Genome-Wide Aberrant Splicing in Patients with Acute Myeloid Leukemia (AML) Indetifies Potential<br>Novel Targets. Blood, 2011, 118, 761-761.                   | 1.4  | 0         |
| 108 | Chapter 7: On the Integration of Prior Knowledge in the Inference of Regulatory Networks. Science,<br>Engineering, and Biology Informatics, 2014, , 169-199.    | 0.1  | 0         |

0

| #   | Article                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Looking back at the first twenty years of genomics. Quantitative Biology, 2022, 10, 6-16. | 0.5 | 0         |
|     |                                                                                           |     |           |

110 Al Methods for Analyzing Microarray Data. , 0, , 877-884.