Marco Sola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3688677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Molecular and Cellular Endocrinology, 2022, 542, 111527.	1.6	10
2	Activity and substrate specificity of lytic polysaccharide monooxygenases: An <scp>ATR FTIR</scp> â€based sensitive assay tested on a novel species from <i>Pseudomonas putida</i> . Protein Science, 2022, 31, 591-601.	3.1	5
3	Electron Transfer and Electrocatalytic Properties of the Immobilized Met80Ala Cytochrome <i>c</i> Variant in Dimethylsulfoxide. ChemElectroChem, 2021, 8, 2115-2123.	1.7	4
4	How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules, 2021, 26, 4950.	1.7	4
5	The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coordination Chemistry Reviews, 2021, 445, 214071.	9.5	14
6	Pseudoperoxidase activity, conformational stability and aggregation propensity of the His98Tyr myoglobin variant: Implications for the onset of myoglobinopathy. FEBS Journal, 2021, , .	2.2	1
7	Urea-induced denaturation of immobilized yeast iso-1 cytochrome c: Role of Met80 and Tyr67 in the thermodynamics of unfolding and promotion of pseudoperoxidase and nitrite reductase activities. Electrochimica Acta, 2020, 363, 137237.	2.6	11
8	Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry, 2020, 136, 107628.	2.4	13
9	Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome <i>c</i> : comparing the solution <i>vs.</i> immobilized state. RSC Chemical Biology, 2020, 1, 421-435.	2.0	5
10	Binding of S. cerevisiae iso-1 cytochrome c and its surface lysine-to-alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio. Journal of Biological Inorganic Chemistry, 2020, 25, 467-487.	1.1	12
11	Electrocatalytic Properties of Immobilized Heme Proteins: Basic Principles and Applications. ChemElectroChem, 2019, 6, 5172-5185.	1.7	12
12	Enamel peptides reveal the sex of the Late Antique â€~Lovers of Modena'. Scientific Reports, 2019, 9, 13130.	1.6	37
13	Label free detection of plant viruses with organic transistor biosensors. Sensors and Actuators B: Chemical, 2019, 281, 150-156.	4.0	55
14	Probing the Effect of Sildenafil on Progesterone and Testosterone Production by an Intracellular FRET/BRET Combined Approach. Biochemistry, 2019, 58, 799-808.	1.2	16
15	The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. Journal of Inorganic Biochemistry, 2018, 178, 70-86.	1.5	13
16	Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations. Inorganic Chemistry, 2018, 57, 86-97.	1.9	72
17	Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 335-342.	1.4	6
18	Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. Journal of Biological Inorganic Chemistry, 2017, 22, 615-623.	1.1	24

#	Article	IF	CITATIONS
19	The dynamics of the \hat{l}^2 -propeller domain in Kelch protein KLHL40 changes upon nemaline myopathy-associated mutation. RSC Advances, 2016, 6, 34043-34054.	1.7	6
20	Excitation-Energy Transfer Paths from Tryptophans to Coordinated Copper Ions in Engineered Azurins: a Source of Observables for Monitoring Protein Structural Changes. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1329-1349.	1.4	4
21	Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. Journal of Biological Inorganic Chemistry, 2015, 20, 531-540.	1.1	26
22	Solvent tunes the peroxidase activity of cytochrome c immobilized on kaolinite. Applied Clay Science, 2015, 118, 316-324.	2.6	1
23	Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts. Electrochimica Acta, 2015, 176, 1019-1028.	2.6	14
24	Unambiguous Assignment of Reduction Potentials in Diheme Cytochromes. Journal of Physical Chemistry B, 2014, 118, 7554-7560.	1.2	20
25	Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics, 2014, 6, 874.	1.0	16
26	How the Dynamics of the Metal-Binding Loop Region Controls the Acid Transition in Cupredoxins. Biochemistry, 2013, 52, 7397-7404.	1.2	5
27	Axial iron coordination and spin state change in a heme c upon electrostatic protein–SAM interaction. Physical Chemistry Chemical Physics, 2013, 15, 13499.	1.3	12
28	Electrochemically assisted grafting of asymmetric alkynyl(aryl)iodonium salts on glassy carbon with focus on the alkynyl/aryl grafting ratio. Journal of Electroanalytical Chemistry, 2013, 710, 41-47.	1.9	10
29	A surface-immobilized cytochrome c variant provides a pH-controlled molecular switch. Chemical Science, 2012, 3, 807-810.	3.7	25
30	pH and Solvent H/D Isotope Effects on the Thermodynamics and Kinetics of Electron Transfer for Electrode-Immobilized Native and Urea-Unfolded Stellacyanin. Langmuir, 2012, 28, 15087-15094.	1.6	14
31	Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome <i>c</i> . Biochemistry, 2012, 51, 5967-5978.	1.2	40
32	Understanding the Mechanism of Short-Range Electron Transfer Using an Immobilized Cupredoxin. Journal of the American Chemical Society, 2012, 134, 11848-11851.	6.6	34
33	The Reversible Opening of Water Channels in Cytochrome <i>c</i> Modulates the Heme Iron Reduction Potential. Journal of the American Chemical Society, 2012, 134, 13670-13678.	6.6	71
34	A bis-histidine-ligated unfolded cytochrome c immobilized on anionic SAM shows pseudo-peroxidase activity. Electrochemistry Communications, 2012, 14, 29-31.	2.3	31
35	Metal-Binding Loop Length Is a Determinant of the p <i>K</i> _a of a Histidine Ligand at a Type 1 Copper Site. Inorganic Chemistry, 2011, 50, 482-488.	1.9	13
36	The Reorganization Energy in Cytochrome c is Controlled by the Accessibility of the Heme to the Solvent. Journal of Physical Chemistry Letters, 2011, 2, 1761-1765.	2.1	57

#	Article	IF	CITATIONS
37	Cloning, expression, and physicochemical characterization of a new diheme cytochrome c from Shewanella baltica OS155. Journal of Biological Inorganic Chemistry, 2011, 16, 461-471.	1.1	17
38	Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions. Journal of Inorganic Biochemistry, 2011, 105, 806-811.	1.5	10
39	Disruption of the H-bond network in the main access channel of catalase–peroxidase modulates enthalpy and entropy of Fe(III) reduction. Journal of Inorganic Biochemistry, 2010, 104, 648-656.	1.5	17
40	Control of reduction thermodynamics in [2Fe–2S] ferredoxins. Journal of Inorganic Biochemistry, 2010, 104, 691-696.	1.5	12
41	Redox and Electrocatalytic Properties of Mimochrome VI, a Synthetic Heme Peptide Adsorbed on Gold. Langmuir, 2010, 26, 17831-17835.	1.6	27
42	Factors Affecting the Electron Transfer Properties of an Immobilized Cupredoxin. Journal of Physical Chemistry C, 2010, 114, 22322-22329.	1.5	19
43	Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Archives of Biochemistry and Biophysics, 2010, 494, 72-77.	1.4	34
44	Redox properties of heme peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 21-36.	1.4	186
45	Electron Transfer Properties and Hydrogen Peroxide Electrocatalysis of Cytochrome <i>c</i> Variants at Positions 67 and 80. Journal of Physical Chemistry B, 2010, 114, 1698-1706.	1.2	43
46	Thermodynamics and kinetics of the electron transfer process of spinach plastocyanin adsorbed on a modified gold electrode. Journal of Electroanalytical Chemistry, 2009, 626, 123-129.	1.9	14
47	Active site loop dictates the thermodynamics of reduction and ligand protonation in cupredoxins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 995-1000.	1.1	8
48	Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of Surface-Immobilized Cytochrome c4. Journal of Physical Chemistry B, 2009, 113, 13645-13653.	1.2	18
49	Thermodynamic and kinetic aspects of the electron transfer reaction of bovine cytochrome c immobilized on 4-mercaptopyridine and 11-mercapto-1-undecanoic acid films. Journal of Applied Electrochemistry, 2008, 38, 885-891.	1.5	20
50	Cloning, expression and physicochemical characterization of a di-heme cytochrome c 4 from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Biological Inorganic Chemistry, 2008, 13, 789-799.	1.1	10
51	Electron Transfer and Electrocatalytic Properties of the Immobilized Methionine80Alanine Cytochrome <i>c</i> Variant. Journal of Physical Chemistry B, 2008, 112, 1555-1563.	1.2	39
52	Catalytic Reduction of Dioxygen and Nitrite Ion at a Met80Ala Cytochrome <i>c</i> -Functionalized Electrode. Journal of the American Chemical Society, 2008, 130, 15099-15104.	6.6	31
53	Free Energy of Transition for the Individual Alkaline Conformers of Yeast Iso-1-cytochromecâ€,‡. Biochemistry, 2007, 46, 1694-1702.	1.2	36
54	Effects of Mutational (Lys to Ala) Surface Charge Changes on the Redox Properties of Electrode-Immobilized Cytochrome c. Journal of Physical Chemistry B, 2007, 111, 10281-10287.	1.2	37

#	Article	IF	CITATIONS
55	Orientation-Dependent Kinetics of Heterogeneous Electron Transfer for Cytochrome <i>c</i> Immobilized on Gold:  Electrochemical Determination and Theoretical Prediction. Journal of Physical Chemistry C, 2007, 111, 12100-12105.	1.5	26
56	Protonation of a Histidine Copper Ligand in Fern Plastocyanin. Journal of the American Chemical Society, 2007, 129, 4423-4429.	6.6	22
57	Thermodynamics of the alkaline transition in phytocyanins. Journal of Biological Inorganic Chemistry, 2007, 12, 895-900.	1.1	7
58	Redox reactivity of the heme Fe3+/Fe2+ couple in native myoglobins and mutants with peroxidase-like activity. Journal of Biological Inorganic Chemistry, 2007, 12, 951-958.	1.1	27
59	Redox Thermodynamics of the Ferricâ	1.2	26
60	Redox Thermodynamics of the Fe(III)/Fe(II) Couple of Human Myeloperoxidase in Its High-Spin and Low-Spin Formsâ€. Biochemistry, 2006, 45, 12750-12755.	1.2	56
61	The Redox Chemistry of the Covalently Immobilized Native and Low-pH Forms of Yeast Iso-1-cytochromec. Journal of the American Chemical Society, 2006, 128, 5444-5451.	6.6	54
62	Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct. Journal of Biological Inorganic Chemistry, 2006, 11, 586-592.	1.1	21
63	Electrostatic Effects on the Thermodynamics of Protonation of Reduced Plastocyanin. ChemBioChem, 2005, 6, 692-696.	1.3	7
64	Axial ligation and polypeptide matrix effects on the reduction potential of heme proteins probed on their cyanide adducts. Journal of Biological Inorganic Chemistry, 2005, 10, 643-651.	1.1	22
65	Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. Journal of Biological Inorganic Chemistry, 2005, 10, 867-873.	1.1	26
66	A computational protocol to probe the role of solvation effects on the reduction potential of azurin mutants. Proteins: Structure, Function and Bioinformatics, 2005, 62, 262-269.	1.5	10
67	Ligand Loop Effects on the Free Energy Change of Redox and pH-Dependent Equilibria in Cupredoxins Probed on Amicyanin Variants. Biochemistry, 2005, 44, 9944-9949.	1.2	24
68	Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins. Journal of Biological Inorganic Chemistry, 2004, 9, 23-26.	1.1	42
69	Solvent-based deuterium isotope effects on the redox thermodynamics of cytochrome c. Journal of Biological Inorganic Chemistry, 2004, 9, 781-787.	1.1	32
70	Computational approaches to structural and functional analysis of plastocyanin and other blue copper proteins. Cellular and Molecular Life Sciences, 2004, 61, 1123-1142.	2.4	24
71	Grabbing Yeast Iso-1-cytochromecby Cys102:Â An Effective Approach for the Assembly of Functionally Active Metalloprotein Carpets. Langmuir, 2004, 20, 8812-8816.	1.6	13
72	Characterization of the solution reactivity of a basic heme peroxidase from Cucumis sativus. Archives of Biochemistry and Biophysics, 2004, 423, 317-331.	1.4	15

#	Article	IF	CITATIONS
73	1H NMR of native and azide-inhibited laccase from Rhus vernicifera. Journal of Inorganic Biochemistry, 2003, 96, 503-506.	1.5	17
74	Control of Metalloprotein Reduction Potential:Â Compensation Phenomena in the Reduction Thermodynamics of Blue Copper Proteinsâ€. Biochemistry, 2003, 42, 9214-9220.	1.2	58
75	Thermodynamics of the Acid Transition in Blue Copper Proteinsâ€. Biochemistry, 2002, 41, 14293-14298.	1.2	32
76	Redox Thermodynamics of the Fe3+/Fe2+Couple in Horseradish Peroxidase and Its Cyanide Complex. Journal of the American Chemical Society, 2002, 124, 26-27.	6.6	63
77	Control of CytochromecRedox Potential:Â Axial Ligation and Protein Environment Effects. Journal of the American Chemical Society, 2002, 124, 5315-5324.	6.6	191
78	Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c. Archives of Biochemistry and Biophysics, 2002, 404, 227-233.	1.4	19
79	Effects of Specific Anion-Protein Binding on the Alkaline Transition of Cytochrome c. Archives of Biochemistry and Biophysics, 2001, 386, 117-122.	1.4	12
80	Isolation and Characterization of Two Peroxidases from Cucumis sativus. Archives of Biochemistry and Biophysics, 2001, 388, 100-112.	1.4	21
81	Redox Properties of Cytochromec. Antioxidants and Redox Signaling, 2001, 3, 279-291.	2.5	30
82	Enthalpic and Entropic Contributions to the Mutational Changes in the Reduction Potential of Azurinâ€. Biochemistry, 2001, 40, 6707-6712.	1.2	38
83	Control of Metalloprotein Reduction Potential:Â The Role of Electrostatic and Solvation Effects Probed on Plastocyanin Mutantsâ€. Biochemistry, 2001, 40, 6422-6430.	1.2	44
84	Redox properties and acid–base equilibria of zucchini mavicyanin. Journal of Inorganic Biochemistry, 2001, 83, 223-227.	1.5	24
85	Medium and Temperature Effects on the Redox Chemistry of Cytochromec. European Journal of Inorganic Chemistry, 2001, 2001, 2989-3004.	1.0	62
86	Redox thermodynamics of mutant forms of the rubredoxin from Clostridiumpasteurianum: identification of a stable FeIII(S-Cys)3(OH) centre in the C6S mutant. Journal of Biological Inorganic Chemistry, 2001, 6, 638-649.	1.1	19
87	Medium and Temperature Effects on the Redox Chemistry of Cytochrome c. , 2001, 2001, 2989.		3
88	Redox thermodynamics of low-potential iron-sulfur proteins. Journal of Biological Inorganic Chemistry, 2000, 5, 748-760.	1.1	42
89	The effect of pH and ligand exchange on the redox properties of blue copper proteins. Faraday Discussions, 2000, 116, 205-220.	1.6	40
90	1H NMR of oxidized blue copper proteins. Journal of Inorganic Biochemistry, 1999, 75, 153-157.	1.5	5

#	Article	IF	CITATIONS
91	Effects of nonspecific ion-protein interactions on the redox chemistry of cytochrome c. Journal of Biological Inorganic Chemistry, 1999, 4, 601-607.	1.1	40
92	Redox Chemistry and Acidâ^'Base Equilibria of Mitochondrial Plant Cytochromescâ€. Biochemistry, 1999, 38, 5553-5562.	1.2	56
93	Redox Thermodynamics of Blue Copper Proteins. Journal of the American Chemical Society, 1999, 121, 501-506.	6.6	108
94	Thermodynamics of the Alkaline Transition of Cytochromecâ€. Biochemistry, 1999, 38, 7900-7907.	1.2	49
95	Effects of solvent on the redox properties of cytochrome c: cyclic voltammetry and 1H NMR experiments in mixed water-dimethylsulfoxide solutions. Inorganica Chimica Acta, 1998, 272, 168-175.	1.2	38
96	Palladium(II) complexes of N-sulfonyl-asparagine and glutamine. Evidence for metal coordination of the side-chain. Inorganica Chimica Acta, 1998, 273, 397-402.	1.2	8
97	Redox properties of the basic blue protein (plantacyanin) from spinach. Journal of Inorganic Biochemistry, 1998, 69, 97-100.	1.5	29
98	Metal Ion Binding to a Zinc Finger Peptide Containing the Cys-X2-Cys-X4-His-X4-Cys Domain of a Nucleic Acid Binding Protein Encoded by theDrosophilaFw-Element. Biochemical and Biophysical Research Communications, 1998, 242, 385-389.	1.0	19
99	Redox Thermodynamics of the Native and Alkaline Forms of Eukaryotic and Bacterial Class I Cytochromes c. Biochemistry, 1997, 36, 16247-16258.	1.2	118
100	Anion Binding to Cytochromec2: Implications on Protein–Ion Interactions in Class I Cytochromesc. Archives of Biochemistry and Biophysics, 1997, 339, 283-290.	1.4	22
101	Redox thermodynamics, acid-base equilibria and salt-induced effects for the cucumber basic protein. General implications for blue-copper proteins. Journal of Biological Inorganic Chemistry, 1997, 2, 350-359.	1.1	53
102	Amide Group Coordination to the Pb2+lon. Inorganic Chemistry, 1996, 35, 4239-4247.	1.9	76
103	Anion Binding to Mitochondrial Cytochromes c Studied through Electrochemistry. Effects of the neutralization of surface charges on the redox potential. FEBS Journal, 1996, 241, 208-214.	0.2	50
104	Coordination of 2-hydroxyhippuric acid to the copper(II) ion: a solution and solid state study. Inorganica Chimica Acta, 1996, 244, 207-212.	1.2	13
105	Cyclic Voltammetry and 1H-NMR of Rhodopseudomonas palustris Cytochrome c2. Probing Surface Charges through Anion-Binding Studies. FEBS Journal, 1995, 233, 335-339.	0.2	17
106	Cyclic Voltammetry and 1H-NMR of Rhodopseudomonas Palustris Cytochrome c 2 pH-Dependent Conformational States. FEBS Journal, 1995, 232, 206-213.	0.2	28
107	Polymetallic hydrolytic zinc enzymes. Probing the site of nuclease P1 through cobalt(II) substitution. Inorganica Chimica Acta, 1995, 234, 9-11.	1.2	3
108	Magnetic Resonance of Fe-S Clusters: Isolation and Characterization of a 7Fe Ferredoxin from Rhodopseudomonas palustris. Archives of Biochemistry and Biophysics, 1995, 320, 149-154.	1.4	12

#	Article	IF	CITATIONS
109	Metal-Induced Conformational Heterogeneity of Transferrins: A Spectroscopic Study of Indium(III) and Other Metal(III)-Substituted Transferrins. Biochemical and Biophysical Research Communications, 1995, 206, 161-170.	1.0	22
110	Influence of Surface Charges on Redox Properties in High Potential Iron-Sulfur Proteins. Biochemical and Biophysical Research Communications, 1994, 203, 436-442.	1.0	40
111	Palladium(II) complexes of N-sulfonylamino acids. Part 2. Co-ordination behaviour under strongly acidic conditions. Journal of the Chemical Society Dalton Transactions, 1994, , 279.	1.1	6
112	Palladium(II) complexes of N-sulfonylamino acids. Part 3. Ternary adducts with 2,2′-bipyridine. Journal of the Chemical Society Dalton Transactions, 1994, , 285-287.	1.1	3
113	Assignment of Pseudo-contact-shifted1H NMR resonances in the EF site of Yb3 +-substituted rabbit parvalbumin through a combination of 2D techniques and magnetic susceptibility tensor determination. Magnetic Resonance in Chemistry, 1993, 31, S118-S127.	1.1	14
114	Electron transfer between copper and zinc superoxide dismutase and hexacyanoferrate(II). Inorganic Chemistry, 1993, 32, 1106-1110.	1.9	8
115	Deprotonated amide nitrogen co-ordination to the cadmium(II) ion in ternary 2,2′-bipyridine complexes with N-sulfonyl amino acids. Journal of the Chemical Society Dalton Transactions, 1992, , 2623-2628.	1.1	20
116	Two-dimensional proton NMR studies of the paramagnetic metalloenzyme copper-nickel superoxide dismutase. Inorganic Chemistry, 1992, 31, 4433-4435.	1.9	28
117	Redox chemistry of superoxide dismutase. Cyclic voltammetry of wild-type enzymes and mutants on functionally relevant residues. Inorganic Chemistry, 1992, 31, 4649-4655.	1.9	77
118	Assignment of heme resonances in the 1H NMR spectrum of oxidized Desulfovibrio vulgaris (Hildenborough) cytochrome c3. Inorganica Chimica Acta, 1992, 202, 241-251.	1.2	11
119	Fe3+ binding to ovotransferrin in the presence of α-amino acids. BBA - Proteins and Proteomics, 1992, 1118, 313-317.	2.1	5
120	Copper(II) complexes with N-sulphonyl amino acids. Structure-stability relationships in binary species and ternary complexes with 2,2′-bipyridine. Journal of the Chemical Society Dalton Transactions, 1991, , 2961-2965.	1.1	12
121	Proton NMR spectroscopy and the electronic structure of the high potential iron-sulfur protein from Chromatium vinosum. Journal of the American Chemical Society, 1991, 113, 1237-1245.	6.6	111
122	Solid state behaviour of N-tosyl-DL-asparagine-Cu(II)-2,2′-bipyridine system. Inorganica Chimica Acta, 1991, 187, 197-200.	1.2	2
123	Structural and spectroscopic properties of N-benzenesulphonylglycine complexes with copper (II). Journal of Crystallographic and Spectroscopic Research, 1991, 21, 313-319.	0.3	5
124	Oxalate as synergistic anion for Cd(II) binding to ovotransferrin. FEBS Journal, 1990, 194, 349-353.	0.2	11
125	Stabilizing effects in Pd(II)-N-ArSO2-amino acidate complexes: Crystal and molecular structure of disodium bis(N-benzenesulfonylglycinato-NO)palladate(II) monohydrate. Inorganica Chimica Acta, 1990, 176, 95-98.	1.2	9
126	13C and 1H NMR studies of imidazole binding to native and Co(II)-substituted human carbonic anhydrase I. Inorganica Chimica Acta, 1990, 177, 133-139.	1.2	7

#	Article	IF	CITATIONS
127	Ternary copper(II) complexes with 2,2′-bipyridine and N-tosyl-substituted amino acids. Part 1. Polarographic and pH-metric study. Journal of the Chemical Society Dalton Transactions, 1990, , 91-95.	1.1	5
128	Proton NMR studies of oxidized high-potential iron protein from Chromatium vinosum. Nuclear Overhauser effect measurements. Biochemistry, 1990, 29, 5633-5637.	1.2	28
129	Proton NMR hyperfine-shifted resonances from the exchange-coupled Fe4S4-siroheme of the assimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Inorganic Chemistry, 1990, 29, 2176-2179.	1.9	14
130	Cadmium-113 and carbon-13 NMR of cadmium(II) transferrins. Inorganic Chemistry, 1990, 29, 1113-1116.	1.9	21
131	Ternary copper(II) complexes with 2,2â€ ² -bipyridine and N-tosyl-substituted amino acids. Part 2. Crystal and molecular structure of aqua(2,2â€ ² -bipyridine)bis(N-tosyl-DL-asparaginato-O)copper(II) dihydrate and (2,2â€ ² -bipyridine)(N-tosyl-DL-asparaginato-NO)copper(II) monohydrate. Journal of the Chemical Society Dalton Transactions. 1990. , 97-100.	1.1	12
132	Sulphonamide nitrogen-containing N-protected amino acids interacting with palladium(II). Polarographic and pH-metric investigation in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1990, , 1585.	1.1	9
133	Deprotonated amide nitrogen coordinating to the palladium(II) ion. Crystal and molecular structure		

#	Article	IF	CITATIONS
145	The effect of a dansyl group on the co-ordinative ability of N-protected amino acids. Part 1. Behaviour of the copper(II) ion–N-dansylglycinate system in aqueous and methanolic solution. Journal of the Chemical Society Dalton Transactions, 1985, , 2363-2368.	1.1	26
146	Coordination behavior of L-glutamic acid: spectroscopic and structural properties of (L-glutamato)(imidazole)copper(II), (L-glutamato)(2,2'-bipyridine)copper(II), and aqua(L-glutamato)(1,10-phenanthroline)copper(II) trihydrate complexes. Inorganic Chemistry, 1985, 24, 3621-3626.	1.9	70
147	Imidazole-containing ternary complexes of N-benzyloxycarbonyl-aminoacids. Crystal and molecular structure of bis(N-benzyloxycarbonyl-alaninato)bis-(N-methylimidazole)copper(II) ethanol solvate. Inorganica Chimica Acta, 1984, 93, 61-66.	1.2	28
148	X-Ray evidence of intermolecular stacking interactions in a ternary complex. Crystal and molecular structure of the complex bis(N-benzyloxycarbonylglycinato)(2,2′-bipyridine)(propan-2-ol)-copper(II). Journal of the Chemical Society Dalton Transactions, 1984, , 2319-2323.	1.1	14