Koon Gee Neoh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3688577/koon-gee-neoh-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

635 33,568 92 143 h-index g-index citations papers 647 5.8 7.28 35,476 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
635	Wirelessly Activated Nanotherapeutics for In Vivo Programmable Photodynamic-Chemotherapy of Orthotopic Bladder Cancer <i>Advanced Science</i> , 2022 , e2200731	13.6	2
634	Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 2233-2263	4.3	17
633	Emerging pharmaceutical and organic contaminants removal using carbonaceous waste from oil refineries. <i>Chemosphere</i> , 2021 , 271, 129542	8.4	2
632	Adsorptive removal of tetracycline and amoxicillin from aqueous solution by leached carbon black waste and chitosan-carbon composite beads. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104988	6.8	12
631	Facile fabrication of porous waste-derived carbon-polyethylene terephthalate composite sorbent for separation of free and emulsified oil from water. <i>Separation and Purification Technology</i> , 2021 , 279, 119664	8.3	3
630	Potentiating anti-cancer chemotherapeutics and antimicrobials via sugar-mediated strategies. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 772-791	4.6	5
629	Switchable Antimicrobial and Antifouling Coatings from Tannic Acid-Scaffolded Binary Polymer Brushes. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 2586-2595	8.3	25
628	Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 21159-21182	9.5	50
627	Polydopamine Coating Enhances Mucopenetration and Cell Uptake of Nanoparticles. <i>ACS Applied Materials & Materials</i>	9.5	36
626	Sugar-powered nanoantimicrobials for combating bacterial biofilms. <i>Biomaterials Science</i> , 2019 , 7, 2961	- 2 9 ₁ 74	3
625	Mucopenetration and biocompatibility of polydopamine surfaces for delivery in an Ex Vivo porcine bladder. <i>Journal of Controlled Release</i> , 2019 , 300, 161-173	11.7	13
624	Receptor-Targeting Drug and Drug Carrier for Enhanced Killing Efficacy against Non-Muscle-Invasive Bladder Cancer <i>ACS Applied Bio Materials</i> , 2019 , 2, 3763-3773	4.1	1
623	One-Step Anchoring of Tannic Acid-Scaffolded Bifunctional Coatings of Antifouling and Antimicrobial Polymer Brushes. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1786-1795	8.3	20
622	Transparent Copper-Based Antibacterial Coatings with Enhanced Efficacy against Pseudomonas aeruginosa. <i>ACS Applied Materials & Acs Applied </i>	9.5	21
621	Tailoring Polyelectrolyte Architecture To Promote Cell Growth and Inhibit Bacterial Adhesion. <i>ACS Applied Materials & Discrete Applied & Discrete App</i>	9.5	29
620	Dextran- and Chitosan-Based Antifouling, Antimicrobial Adhesion, and Self-Polishing Multilayer Coatings from pH-Responsive Linkages-Enabled Layer-by-Layer Assembly. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3916-3926	8.3	47
619	Dominant Albumin-Surface Interactions under Independent Control of Surface Charge and Wettability. <i>Langmuir</i> , 2018 , 34, 1953-1966	4	13

(2017-2018)

618	in a conductive scaffold for potential orthopaedic applications. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 878-889	4.4	36
617	Biomimetic Anchors for Antifouling and Antibacterial Polymeric Coatings. <i>ACS Symposium Series</i> , 2018 , 233-261	0.4	1
616	Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. <i>BMC Infectious Diseases</i> , 2018 , 18, 370	4	19
615	Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2018 , 10, 21125-21136	9.5	147
614	pH-Sensitive Zwitterionic Polymer as an Antimicrobial Agent with Effective Bacterial Targeting. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 40-46	5.5	33
613	pH-Sensitive Theranostic Nanoparticles for Targeting Bacteria with Fluorescence Imaging and Dual-Modal Antimicrobial Therapy. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6187-6196	5.6	17
612	Natural polyphenols as versatile platforms for material engineering and surface functionalization. Progress in Polymer Science, 2018 , 87, 165-196	29.6	129
611	Extraction and quantification of biofilm bacteria: Method optimized for urinary catheters. <i>Scientific Reports</i> , 2018 , 8, 8069	4.9	40
610	Surface modification strategies for combating catheter-related complications: recent advances and challenges. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2045-2067	7.3	75
609	Arginine-Based Polymer Brush Coatings with Hydrolysis-Triggered Switchable Functionalities from Antimicrobial (Cationic) to Antifouling (Zwitterionic). <i>Langmuir</i> , 2017 , 33, 6925-6936	4	17
608	Methoxy group substitution on catechol ring of dopamine facilitates its polymerization and formation of surface coatings. <i>Polymer</i> , 2017 , 116, 5-15	3.9	12
607	Tea Stains-Inspired Antifouling Coatings Based on Tannic Acid-Functionalized Agarose. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 3055-3062	8.3	24
606	Variation of household electricity consumption and potential impact of outdoor PM2.5 concentration: A comparison between Singapore and Shanghai. <i>Applied Energy</i> , 2017 , 188, 475-484	10.7	18
605	Thiol-ol Chemistry for Grafting of Natural Polymers to Form Highly Stable and Efficacious Antibacterial Coatings. <i>ACS Applied Materials & Englished & Englished Materials & Englished Materials & Englished Materials & Englished Materials & Englished & Englished Materials & Englished Materials & Englished &</i>	9.5	28
604	Transparent Copper-Loaded Chitosan/Silica Antibacterial Coatings with Long-Term Efficacy. <i>ACS Applied Materials & District Materials &</i>	9.5	17
603	A one step method for the functional and property modification of DOPA based nanocoatings. <i>Nanoscale</i> , 2017 , 9, 12409-12415	7.7	13
602	Biomimetic Anchors for Antifouling Polymer Brush Coatings 2017 , 377-403		1
601	Antifouling and Antimicrobial Coatings from Zwitterionic and Cationic Binary Polymer Brushes Assembled via [Ilick[Reactions. Industrial & Empire Engineering Chemistry Research, 2017, 56, 14479-14488]	3.9	33

600	Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. <i>Journal of Colloid and Interface Science</i> , 2017 , 487, 1-11	9.3	17
599	Chemically treated carbon black waste and its potential applications. <i>Journal of Hazardous Materials</i> , 2017 , 321, 62-72	12.8	40
598	Toxicity assessment of carbon black waste: A by-product from oil refineries. <i>Journal of Hazardous Materials</i> , 2017 , 321, 600-610	12.8	21
597	Fabrication of conductive carbon nanomaterial from carbonaceous waste. <i>Energy Procedia</i> , 2017 , 143, 487-493	2.3	
596	Scalable Aqueous-Based Process for Coating Polymer and Metal Substrates with Stable Quaternized Chitosan Antibacterial Coatings. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 9603-9613	3.9	16
595	The chemical reactivities of DOPA and dopamine derivatives and their regioselectivities upon oxidative nucleophilic trapping. <i>Tetrahedron</i> , 2016 , 72, 6543-6550	2.4	10
594	On the association between outdoor PM concentration and the seasonality of tuberculosis for Beijing and Hong Kong. <i>Environmental Pollution</i> , 2016 , 218, 1170-1179	9.3	55
593	One-Pot UV-Triggered o-Nitrobenzyl Dopamine Polymerization and Coating for Surface Antibacterial Application. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 33131-33138	9.5	20
592	Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion. <i>ACS Applied Materials & Company Comp</i>	9.5	94
591	Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 426	4 ⁸ 4 ³ 272	31
590	Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse" for Potentiating Antibiotic Activity. <i>Pharmaceutical Research</i> , 2016 , 33, 1161-74	4.5	14
589	Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 141, 65-73	6	9
588	Antifouling Coatings via Tethering of Hyperbranched Polyglycerols on Biomimetic Anchors. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 1890-1901	3.9	36
587	Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings. <i>RSC Advances</i> , 2016 , 6, 14809-14818	3.7	44
586	Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. <i>European Journal of Pharmaceutical Sciences</i> , 2016 , 84, 103-15	5.1	22
585	Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium. <i>Applied Surface Science</i> , 2016 , 360, 86-97	6.7	19
584	Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. <i>Acta Biomaterialia</i> , 2016 , 32, 46-56	10.8	104
583	Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. <i>Polymer Chemistry</i> , 2016 , 7, 493-501	4.9	58

582	Rapid toxicity screening of gasification ashes. Waste Management, 2016, 50, 93-104	8.6	15
581	Tailoring Soft Nanoparticles for Potential Application as Drug Carriers in Bladder Cancer Chemotherapy. <i>ACS Symposium Series</i> , 2016 , 167-195	0.4	1
580	Antifouling, Antimicrobial, and Antibiocorrosion Multilayer Coatings Assembled by Layer-by-layer Deposition Involving Host © uest Interaction. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 10906-10915	3.9	29
579	Quantification of aldehyde terminated heparin by SEC-MALLS-UV for the surface functionalization of polycaprolactone biomaterials. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 132, 253-63	6	8
578	Antifouling Coatings of Catecholamine Copolymers on Stainless Steel. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 5959-5967	3.9	21
577	Bifunctional Coating with Sustained Release of 4-Amide-piperidine-C12 for Long-Term Prevention of Bacterial Colonization on Silicone. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 405-415	5.5	14
576	Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. <i>Journal of Colloid and Interface Science</i> , 2015 , 452, 43-53	9.3	98
575	Characterization of Nanomaterials/Nanoparticles 2015 , 23-44		О
574	Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. <i>European Journal of Pharmaceutical Sciences</i> , 2015 , 72, 57-68	5.1	38
573	Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 519-28	3.5	74
572	Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. <i>Journal of Colloid and Interface Science</i> , 2015 , 438, 138-148	9.3	39
571	Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues. <i>Waste Management</i> , 2015 , 36, 241-55	8.6	24
570	Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. <i>Biomacromolecules</i> , 2015 , 16, 723-32	6.9	109
569	Surface nanoengineering for combating biomaterials infections 2015 , 133-161		4
568	CHAPTER 1:Organic Electronic Memory Devices. RSC Polymer Chemistry Series, 2015, 1-53	1.3	3
567	The effects of silver, silicon-containing apatite towards bacteria and cell responses. <i>Biomedical Materials (Bristol)</i> , 2014 , 9, 015010	3.5	17
566	Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells. <i>Chemistry - A European Journal</i> , 2014 , 20, 2723-31	4.8	12
565	Polymer brush coatings for combating marine biofouling. <i>Progress in Polymer Science</i> , 2014 , 39, 1017-1	042).6	316

564	Functionalized and Functionalizable Fluoropolymer Membranes 2014 , 149-181		3
563	Surface Modification of Silicone with Covalently Immobilized and Crosslinked Agarose for Potential Application in the Inhibition of Infection and Omental Wrapping. <i>Advanced Functional Materials</i> , 2014 , 24, 1631-1643	15.6	53
562	A solution-processable polymer-grafted graphene oxide derivative for nonvolatile rewritable memory. <i>Polymer Chemistry</i> , 2014 , 5, 2010-2017	4.9	32
561	Layer-by-layer deposition of antifouling coatings on stainless steel via catechol-amine reaction. <i>RSC Advances</i> , 2014 , 4, 32335-32344	3.7	34
560	Photoinduced anchoring and micropatterning of macroinitiators on polyurethane surfaces for graft polymerization of antifouling brush coatings. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 398-408	7.3	29
559	YolkBhell nanorattles encapsulating a movable Au nanocore in electroactive polyaniline shells for flexible memory device. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5189	7.1	23
558	Hyperbranched polycaprolactone-click-poly(N-vinylcaprolactam) amphiphilic copolymers and their applications as temperature-responsive membranes. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 814-825	7.3	29
557	Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. <i>Langmuir</i> , 2014 , 30, 6151-61	4	86
556	Catecholamine-Induced Electroless Metallization of Silver on [email[protected] Hybrid Nanospheres and Their Catalytic Applications. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 3116-3124	3.9	24
555	Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film. <i>Biomaterials</i> , 2014 , 35, 7690-8	15.6	28
554	Bacterial and osteoblast behavior on titanium, cobalt-chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. <i>Journal of Colloid and Interface Science</i> , 2014 , 417, 410-9	9.3	31
553	Effect of adhesive ligand on cell deadhesion kinetics on poly(N-isopropylacrylamide). <i>Bio-Medical Materials and Engineering</i> , 2014 , 24, 1433-45	1	
552	Enhanced endothelial differentiation of adipose-derived stem cells by substrate nanotopography. Journal of Tissue Engineering and Regenerative Medicine, 2014 , 8, 50-8	4.4	36
55 ¹	In vitro endothelialization of cobalt chromium alloys with micro/nanostructures using adipose-derived stem cells. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 , 24, 1067-77	4.5	6
550	One-pot reaction for the large-scale synthesis of hyperbranched polyglycerol-grafted Fe3O4 nanoparticles. <i>Dalton Transactions</i> , 2013 , 42, 13642-8	4.3	7
549	An in vitro assessment of fibroblast and osteoblast response to alendronate-modified titanium and the potential for decreasing fibrous encapsulation. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1919-30	3.9	18
548	Enhancing bioactivity of chitosan film for osteogenesis and wound healing by covalent immobilization of BMP-2 or FGF-2. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2013 , 24, 645-62	3.5	30
547	Rhodamine derivative-modified filter papers for colorimetric and fluorescent detection of Hg2+ in aqueous media. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2526	13	48

(2012-2013)

546	A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. <i>RSC Advances</i> , 2013 , 3, 25204	3.7	21
545	CO2-triggered fluorescence Eurn-onDesponse of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1207-1212	13	42
544	Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. <i>Journal of Colloid and Interface Science</i> , 2013 , 412, 46-55	9.3	37
543	Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium. <i>Journal of Colloid and Interface Science</i> , 2013 , 406, 238-46	9.3	30
542	Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. <i>Stem Cells and Development</i> , 2013 , 22, 1893-906	4.4	69
541	Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. <i>Polymer Chemistry</i> , 2013 , 4, 3105	4.9	85
540	Methotrexate-conjugated and hyperbranched polyglycerol-grafted FeDImagnetic nanoparticles for targeted anticancer effects. <i>European Journal of Pharmaceutical Sciences</i> , 2013 , 48, 111-20	5.1	54
539	Plasmonic metal nanostructure array by glancing angle deposition for biosensing application. <i>Sensors and Actuators B: Chemical</i> , 2013 , 183, 310-318	8.5	11
538	In situ synthesis and nonvolatile rewritable-memory effect of polyaniline-functionalized graphene oxide. <i>Chemistry - A European Journal</i> , 2013 , 19, 6265-73	4.8	49
537	Cyclodextrin-functionalized graphene nanosheets, and their host-guest polymer nanohybrids. <i>Polymer</i> , 2013 , 54, 2264-2271	3.9	24
536	Combined effects of direct current stimulation and immobilized BMP-2 for enhancement of osteogenesis. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1466-75	4.9	41
535	Barnacle cement as surface anchor for "clicking" of antifouling and antimicrobial polymer brushes on stainless steel. <i>Biomacromolecules</i> , 2013 , 14, 2041-51	6.9	86
534	Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 1304-1315	7.3	33
533	Reactive graphene oxide nanosheets: a versatile platform for the fabrication of graphene oxide-biomolecule/polymer nanohybrids. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 234-8	4.8	22
532	Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage. <i>Applied Physics Letters</i> , 2013 , 103, 262904	3.4	28
531	Hydroxyapatite-coated carboxymethyl chitosan scaffolds for promoting osteoblast and stem cell differentiation. <i>Journal of Colloid and Interface Science</i> , 2012 , 366, 224-232	9.3	79
530	Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. <i>Biomaterials</i> , 2012 , 33, 2813-22	15.6	266
529	Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 336-45	4.9	107

528	Remineralization of partially demineralized dentine substrate based on a biomimetic strategy. Journal of Materials Science: Materials in Medicine, 2012 , 23, 733-42	4.5	28
527	Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy. <i>Biomacromolecules</i> , 2012 , 13, 2513-20	6.9	69
526	Chapter 8:Dispersible Graphene Oxide P olymer Nanocomposites. <i>RSC Nanoscience and Nanotechnology</i> , 2012 , 179-210		2
525	Combined ATRP and 'click' chemistry for designing stable tumor-targeting superparamagnetic iron oxide nanoparticles. <i>Langmuir</i> , 2012 , 28, 563-71	4	42
524	Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. <i>Langmuir</i> , 2012 , 28, 16408-22	4	127
523	Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling. <i>Biomacromolecules</i> , 2012 , 13, 2769-80	6.9	92
522	Surface-Functionalized and Surface-Functionalizable Poly(vinylidene fluoride) Membranes via Controlled/Living Radical Polymerization and Click Chemistry. <i>ACS Symposium Series</i> , 2012 , 211-229	0.4	2
521	Poly(dopamine acrylamide)-co-poly(propargyl acrylamide)-modified titanium surfaces for <code>dlickd</code> functionalization. <i>Polymer Chemistry</i> , 2012 , 3, 920	4.9	51
520	Poly(vinylidene fluoride) Membranes with Hyperbranched Antifouling and Antibacterial Polymer Brushes. <i>Industrial & Description of the Structure of the Structu</i>	3.9	41
519	Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli. <i>Industrial & Discourse Chemistry Research</i> , 2012 , 51, 13164-13172	3.9	25
518	Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces. <i>Biomaterials</i> , 2012 , 33, 8082-93	15.6	45
517	Preparation of jellyfish-shaped amphiphilic block-graft copolymers consisting of a poly(Etaprolactone)-block-poly(pentafluorostyrene) ring and poly(ethylene glycol) lateral brushes. <i>Polymer Chemistry</i> , 2012 , 3, 1061	4.9	36
516	Fluorescent nanoparticles from self-assembly of Eyclodextrin-functionalized fluorene copolymers for organic molecule sensing and cell labeling. <i>Polymer Chemistry</i> , 2012 , 3, 2444	4.9	20
515	Preparation of stimuli responsive polycaprolactone membranes of controllable porous morphology via combined atom transfer radical polymerization, ring-opening polymerization and thiolyne click chemistry. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16248		47
514	Surface modification of magnetic nanoparticles for stem cell labeling. <i>Soft Matter</i> , 2012 , 8, 2057-2069	3.6	41
513	Push P ull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 378-387	2.5	67
512	Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles. <i>Analytical Biochemistry</i> , 2012 , 421, 725-31	3.1	31
511	Designer tridentate mucin 1 aptamer for targeted drug delivery. <i>Journal of Pharmaceutical Sciences</i> , 2012 , 101, 1672-7	3.9	15

(2011-2012)

510	chains via combination of controlled radical polymerization and click chemistry. <i>Soft Matter</i> , 2012 , 8, 5612	3.6	28
509	Electrical Bistability and WORM Memory Effects in Donor Acceptor Polymers Based on Poly (N-vinylcarbazole). <i>ChemPlusChem</i> , 2012 , 77, 74-81	2.8	35
508	In vivo evaluation of titanium oxide and hydroxyapatite as an artificial cornea skirt. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 1063-72	4.5	20
507	In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt. <i>British Journal of Ophthalmology</i> , 2012 , 96, 1252-8	5.5	10
506	Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. <i>Biofouling</i> , 2012 , 28, 895-912	3.3	53
505	Surface modified superparamagnetic iron oxide nanoparticles (SPIONs) for high efficiency folate-receptor targeting with low uptake by macrophages. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16094		28
504	Clickable poly(ester amine) dendrimer-grafted Fe3O4 nanoparticles prepared via successive Michael addition and alkyne\(\text{B}\)zide click chemistry. <i>Polymer Chemistry</i> , 2011 , 2, 1312	4.9	21
503	Hybrid nanorattles of metal core and stimuli-responsive polymer shell for confined catalytic reactions. <i>Polymer Chemistry</i> , 2011 , 2, 1368	4.9	63
502	Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. <i>Langmuir</i> , 2011 , 27, 2761-74	4	179
501	Functional poly(vinylidene fluoride) copolymer membranesvia surface-initiated thiol@ne click reactions. <i>Polymer Chemistry</i> , 2011 , 2, 1849	4.9	43
500	Hairy Hybrid Microrattles of Metal Nanocore with Functional Polymer Shell and Brushes. <i>Macromolecules</i> , 2011 , 44, 2365-2370	5.5	44
499	Functionalization of inorganic nanoparticles with polymers for stealth biomedical applications. <i>Polymer Chemistry</i> , 2011 , 2, 747-759	4.9	73
498	Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. <i>Langmuir</i> , 2011 , 27, 7065-76	4	167
497	Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization. <i>Langmuir</i> , 2011 , 27, 2936-45	4	45
496	Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 2808-19	9.5	89
495	Poly(vinylidene fluoride) Graft Copolymer Membranes with C lickable E urfaces and Their Functionalization. <i>Macromolecules</i> , 2011 , 44, 4258-4268	5.5	64
494	Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection. <i>Corrosion Science</i> , 2011 , 53, 2738-2747	6.8	148
493	Multi-functionalization of poly(vinylidene fluoride) membranes via combined grafting from@and grafting to@pproaches. <i>Soft Matter</i> , 2011 , 7, 11133	3.6	31

492	Synthesis and characterization of fluorescent perylene bisimide-containing glycopolymers for Escherichia coli conjugation and cell imaging. <i>Polymer</i> , 2011 , 52, 5764-5771	3.9	20
491	Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery. <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 2283-92	4.5	59
490	Multifunctional polyglycerol-grafted FeD@SiOIhanoparticles for targeting ovarian cancer cells. <i>Biomaterials</i> , 2011 , 32, 2166-73	15.6	91
489	PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells. <i>Macromolecular Bioscience</i> , 2011 , 11, 1331-5	5.5	62
488	Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. <i>Journal of Orthopaedic Research</i> , 2011 , 29, 1424-30	3.8	27
487	Reduction of graphene oxide by aniline with its concomitant oxidative polymerization. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 684-8	4.8	129
486	Acid-Sensitive Magnetic Nanoparticles as Potential Drug Depots. AICHE Journal, 2011, 57, 1638-1645	3.6	20
485	Surface functionalization of superparamagnetic nanoparticles for the development of highly efficient magnetic resonance probe for macrophages. <i>Contrast Media and Molecular Imaging</i> , 2011 , 6, 298-307	3.2	7
484	Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2011 , 98, 150-9	3.5	52
483	Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units. <i>Chemistry - A European Journal</i> , 2011 , 17, 10304-11	4.8	62
482	Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory. <i>Chemistry - A European Journal</i> , 2011 , 17, 13646-52	4.8	67
481	Water-soluble highly fluorescent poly[poly(ethylene glycol) methyl ether methacrylate] for cell labeling. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6502		24
480	Electrical conductivity switching and memory effects in poly(N-vinylcarbazole) derivatives with pendant azobenzene chromophores and terminal electron acceptor moieties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6027		77
479	Hollow polymeric nanostructuresBynthesis, morphology and function. <i>Progress in Polymer Science</i> , 2011 , 36, 127-167	29.6	162
478	Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. <i>Polymer</i> , 2011 , 52, 2376-2383	3.9	77
477	Silver-Doped Apatite as a Bioactive and an Antimicrobial Bone Material. <i>Key Engineering Materials</i> , 2011 , 493-494, 27-30	0.4	3
476	Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. <i>International Endodontic Journal</i> , 2010 , 43, 930-9	5.4	13
475	Responsive surfaces for biomedical applications. <i>MRS Bulletin</i> , 2010 , 35, 673-681	3.2	11

474	Alternating Silica/Polymer Multilayer Hybrid Microspheres Templates for Double-shelled Polymer and Inorganic Hollow Microstructures. <i>Chemistry of Materials</i> , 2010 , 22, 1309-1317	9.6	93
473	Binary Polymer Brushes on Silica@Polymer Hybrid Nanospheres and Hollow Polymer Nanospheres by Combined AlkyneAzide and ThiolEne Surface Click Reactions. <i>Macromolecules</i> , 2010 , 43, 10275-1028.	2 5·5	67
472	Hairy Hollow Microspheres of Fluorescent Shell and Temperature-Responsive Brushes via Combined Distillation-Precipitation Polymerization and Thiol@ne Click Chemistry. <i>Macromolecules</i> , 2010 , 43, 5797-5803	5.5	72
47 ¹	One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and "click chemistry". <i>Langmuir</i> , 2010 , 26, 15376-2	82	52
470	Nonvolatile Electrical Switching and Write-Once Read-Many-Times Memory Effects in Functional Polyimides Containing Triphenylamine and 1,3,4-Oxadiazole Moieties. <i>Macromolecules</i> , 2010 , 43, 7159-7	′₹ 6 54	106
469	Surface functionalization of copper via oxidative graft polymerization of 2,2'-bithiophene and immobilization of silver nanoparticles for combating biocorrosion. <i>ACS Applied Materials & Lamp; Interfaces</i> , 2010 , 2, 1653-62	9.5	24
468	Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. <i>Journal of Endodontics</i> , 2010 , 36, 1030-5	4.7	176
467	Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy. <i>Journal of Dentistry</i> , 2010 , 38, 138-48	4.8	11
466	Poly(1-vinylimidazole) formation on copper surfaces via surface-initiated graft polymerization for corrosion protection. <i>Corrosion Science</i> , 2010 , 52, 1958-1968	6.8	37
465	Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode. <i>ACS Applied Materials & Company C</i>	9.5	110
464	Organo- and Water-Dispersible Graphene Oxide P olymer Nanosheets for Organic Electronic Memory and Gold Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12742-12748	3.8	120
463	Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. <i>Macromolecules</i> , 2010 , 43, 8336-8339	5.5	652
462	Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention. <i>Langmuir</i> , 2010 , 26, 6728-36	4	66
461	Magnetic nanoparticles for magnetic resonance imaging: modulation of macrophage uptake by controlled PEGylation of the surface coating. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8512		35
460	Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-alpha,beta-malic acid) composite nanoparticles for stem cell labeling. <i>Biomaterials</i> , 2010 , 31, 3502-11	15.6	101
459	Antibacterial poly(D,L-lactide) (PDLLA) fibrous membranes modified with quaternary ammonium moieties. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2010 , 28, 581-588	3.5	17
458	Bifunctional Eu(3+)-doped Gd(2)O(3) nanoparticles as a luminescent and T(1) contrast agent for stem cell labeling. <i>Contrast Media and Molecular Imaging</i> , 2010 , 5, 105-11	3.2	29
457	Preparation and Memory Performance of a Nanoaggregated Dispersed Red 1-Functionalized Poly (N-vinylcarbazole) Film via Solution-Phase Self-Assembly. <i>Advanced Functional Materials</i> , 2010 , 20, 2916	- 2 522	102

456	Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. <i>Advanced Materials</i> , 2010 , 22, 1731-5	24	359
455	Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. <i>Polymer</i> , 2010 , 51, 3377-3386	3.9	37
454	A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate. <i>Materials Science and Engineering C</i> , 2010 , 30, 822-826	8.3	40
453	The effect of VEGF functionalization of titanium on endothelial cells in vitro. <i>Biomaterials</i> , 2010 , 31, 15	78- 5 85	190
452	An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. <i>Biomaterials</i> , 2010 , 31, 8854-63	15.6	132
451	Enzyme-mediated amperometric biosensors prepared via successive surface-initiated atom-transfer radical polymerization. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1102-8	11.8	39
450	Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory applications. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 5790-5800	2.5	76
449	Bistable electrical switching and electronic memory effect in a solution-processable graphene oxide-donor polymer complex. <i>Applied Physics Letters</i> , 2009 , 95, 253301	3.4	106
448	Poly(glycidyl methacrylate) P olyaniline Bilayer-Modified Mild Steel for Combating Biocorrosion in Seawater. <i>Journal of the Electrochemical Society</i> , 2009 , 156, C266	3.9	21
447	Hairy Hybrid Nanoparticles of Magnetic Core, Fluorescent Silica Shell, and Functional Polymer Brushes. <i>Macromolecules</i> , 2009 , 42, 8561-8565	5.5	41
446	Engineering LacI for Self-Assembly of Inorganic Nanoparticles on DNA Scaffold through the Understanding of LacI Binding to Solid Surfaces. <i>Advanced Functional Materials</i> , 2009 , 19, 1186-1192	15.6	4
445	Labeling of Adipose-Derived Stem Cells by Oleic-Acid-Modified Magnetic Nanoparticles. <i>Advanced Functional Materials</i> , 2009 , 19, 1158-1166	15.6	8
444	Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment. <i>Advanced Functional Materials</i> , 2009 , 19, 2615-2622	15.6	113
443	Synthesis of Folic Acid Functionalized PLLA-b-PPEGMA Nanoparticles for Cancer Cell Targeting. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 609-14	4.8	26
442	Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans. <i>Biotechnology and Bioengineering</i> , 2009 , 103, 268-81	4.9	62
441	Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. <i>Biotechnology and Bioengineering</i> , 2009 , 104, 30-9	4.9	169
440	Human bone marrow-derived mesenchymal stem cells and osteoblast differentiation on titanium with surface-grafted chitosan and immobilized bone morphogenetic protein-2. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 1-10	4.5	45
439	Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerizations. <i>Journal of Membrane Science</i> , 2009 , 342, 300-306	9.6	73

(2009-2009)

438	Bioactive surfaces and biomaterials via atom transfer radical polymerization. <i>Progress in Polymer Science</i> , 2009 , 34, 719-761	29.6	327
437	Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes. <i>Applied Surface Science</i> , 2009 , 255, 3854-3858	6.7	65
436	The effect of adhesive ligands on bacterial and fibroblast adhesions to surfaces. <i>Biomaterials</i> , 2009 , 30, 317-26	15.6	40
435	Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. <i>Tissue Engineering - Part A</i> , 2009 , 15, 417-26	3.9	91
434	Conductivity switching and electronic memory effect in polymers with pendant azobenzene chromophores. <i>ACS Applied Materials & amp; Interfaces</i> , 2009 , 1, 60-71	9.5	119
433	(Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. <i>ACS Applied Materials & District Resonance</i> , 1, 328-35	9.5	92
432	Volatile Electrical Switching and Static Random Access Memory Effect in a Functional Polyimide Containing Oxadiazole Moieties. <i>Chemistry of Materials</i> , 2009 , 21, 3391-3399	9.6	121
431	Context-dependent adsorption behavior of cyclic and linear peptides on metal oxide surfaces. <i>Langmuir</i> , 2009 , 25, 1588-93	4	42
430	Triphenylamine Eluorene Alternating Conjugated Copolymers with Pendant Acceptor Groups: Synthesis, Structure Property Relationship, and Photovoltaic Application. <i>Macromolecules</i> , 2009 , 42, 3104-3111	5.5	99
429	Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films. <i>ACS Nano</i> , 2009 , 3, 1929-37	16.7	163
428	Volatile electrical switching in a functional polyimide containing electron-donor and -acceptor moieties. <i>Journal of Applied Physics</i> , 2009 , 105, 044501	2.5	59
427	Concentric hollow nanospheres of mesoporous silica shell-titania core from combined inorganic and polymer syntheses. <i>Langmuir</i> , 2009 , 25, 4361-4	4	55
426	Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. <i>Biomacromolecules</i> , 2009 , 10, 1603-11	6.9	144
425	Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater. <i>Biofouling</i> , 2009 , 25, 109-25	3.3	18
424	Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. <i>Journal of Drug Targeting</i> , 2009 , 17, 181-93	5.4	90
423	Surface Modification of Polymers 2009 ,		4
422	Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion. <i>ACS Applied Materials & Discorrosion and Materials (Companies)</i> 1, 640-52	9.5	71
421	Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery. <i>Bioconjugate Chemistry</i> , 2009 , 20, 1449-58	6.3	105

420	Star-shaped cationic polymers by atom transfer radical polymerization from beta-cyclodextrin cores for nonviral gene delivery. <i>Biomacromolecules</i> , 2009 , 10, 285-93	6.9	177
419	Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications. <i>Biomacromolecules</i> , 2009 , 10, 1665-74	6.9	41
418	Tristable electrical conductivity switching in a polyfluorene-diphenylpyridine copolymer with pendant carbazole groups. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2009 , 367, 4203-14	3	21
417	Corrosion Behavior of Type 304 Stainless Steel in a Simulated Seawater-Based Medium in the Presence and Absence of Aerobic Pseudomonas NCIMB 2021 Bacteria. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 3008-3020	3.9	49
416	Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a Ecyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. <i>Macromolecules</i> , 2008 , 41, 5967-5970	5.5	138
415	pH-Responsive hollow polymeric microspheres and concentric hollow silica microspheres from silica-polymer core-shell microspheres. <i>Langmuir</i> , 2008 , 24, 9050-5	4	108
414	An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. <i>Journal of Endodontics</i> , 2008 , 34, 1515-20	4.7	173
413	Monitoring acid-demineralization of human dentine by electrochemical impedance spectroscopy (EIS). <i>Journal of Dentistry</i> , 2008 , 36, 1005-12	4.8	25
412	Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. <i>Biomacromolecules</i> , 2008 , 9, 331-9	6.9	58
411	CoreBheath Nanofibers from Combined Atom Transfer Radical Polymerization and Electrospinning. <i>Macromolecules</i> , 2008 , 41, 6854-6858	5.5	40
410	Probing the interaction between peptides and metal oxides using point mutants of a TiO2-binding peptide. <i>Langmuir</i> , 2008 , 24, 6852-7	4	56
409	Narrowly Dispersed Double-Walled Concentric Hollow Polymeric Microspheres with Independent pH and Temperature Sensitivity. <i>Macromolecules</i> , 2008 , 41, 9487-9490	5.5	67
408	Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N,N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization. <i>Langmuir</i> , 2008 , 24, 14151-8	4	87
407	Bilayer Memory Device Based on a Conjugated Copolymer and a Carbon Nanotube/Polyaniline Composite. <i>Journal of the Electrochemical Society</i> , 2008 , 155, H205	3.9	12
406	Molecular Conformation-dependent Memory Effects in Non-conjugated Polymers with Pendant Carbazole Moieties. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1071, 1		
405	Biocorrosion Behavior of Titanium Oxide/Butoxide-Coated Stainless Steel. <i>Journal of the Electrochemical Society</i> , 2008 , 155, C196	3.9	40
404	Bistable Electrical Switching and Rewritable Memory Effect in a Thin Film Acrylate Copolymer Containing Carbazole-Oxadiazole Donor Acceptor Pendant Groups. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1114, 50201		
403	Thermally stable polymer memory devices based on a Etonjugated triad. <i>Applied Physics Letters</i> , 2008 , 92, 143302	3.4	45

40	Synthesis and Characterization of ZnS:Mn2+ Nano-Particles for White-Light Emitting. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1199-1202	1.3	4
40	Bioactive titanium implant surfaces with bacterial inhibition and osteoblast function enhancement properties. <i>International Journal of Artificial Organs</i> , 2008 , 31, 777-85	1.9	20
40	Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. <i>Biomaterials</i> , 2008 , 29, 1412-	215.6	396
399	Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. <i>Biomaterials</i> , 2008 , 29, 3023-33	15.6	126
398	Enzyme immobilization in latex dispersion coatings for active food packaging. <i>Packaging Technology and Science</i> , 2008 , 21, 193-205	2.3	31
397	Organic/inorganic hybrid nanospheres coated with palladium/P4VP shells from surface-initiated atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2119-2131	2.5	16
390	Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 86, 865-72	5.4	117
395	Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 1061-74	5.4	59
394	Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide) poly(e-caprolactone) poly(N-isopropylacrylamide) triblock copolymers. <i>Polymer</i> , 2008 , 49, 5084-5094	3.9	78
393	Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. <i>Journal of Membrane Science</i> , 2008 , 320, 259-267	9.6	257
392	Polymer electronic memories: Materials, devices and mechanisms. <i>Progress in Polymer Science</i> , 2008 , 33, 917-978	29.6	860
39:	Preparation of well-defined polymer-silicon wafer hybrids via surface-initiated RAFT-mediated process. <i>Applied Surface Science</i> , 2008 , 254, 2600-2604	6.7	25
390	HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. <i>Biomaterials</i> , 2008 , 29, 2270-9	15.6	52
389	Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 779-86	11.8	44
388	Engineering cell de-adhesion dynamics on thermoresponsive poly(N-isopropylacrylamide). <i>Acta Biomaterialia</i> , 2008 , 4, 218-29	10.8	24
387	Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. <i>Biomaterials</i> , 2008 , 29, 4751-9	15.6	174
380	Antibacterial effect of surface-functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization. <i>Journal of Membrane Science</i> , 2008 , 319, 149-157	9.6	103
385	Conductive Hollow Nanospheres of Polyaniline via Surface-Initiated Atom Transfer Radical Polymerization of 4-Vinylaniline and Oxidative Graft Copolymerization of Aniline. <i>Macromolecules</i> , 2007 40 2271-2275	5.5	68

384	Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization. <i>Langmuir</i> , 2007 , 23, 8585-92	4	133
383	Conformation-Induced Electrical Bistability in Non-conjugated Polymers with Pendant Carbazole Moieties. <i>Chemistry of Materials</i> , 2007 , 19, 5148-5157	9.6	114
382	Antibacterial and Adsorption Characteristics of Activated Carbon Functionalized with Quaternary Ammonium Moieties. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 439-445	3.9	39
381	Bacteria-surface interaction in the presence of proteins and surface attached poly(ethylene glycol) methacrylate chains. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 82, 479-91	5.4	41
380	Polypyrrole Nanospheres with Magnetic and Cell-Targeting Capabilities. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 816-821	4.8	13
379	A flexible polymer memory device. <i>Organic Electronics</i> , 2007 , 8, 401-406	3.5	105
378	Polymer memories: Bistable electrical switching and device performance. <i>Polymer</i> , 2007 , 48, 5182-5201	3.9	195
377	Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry. <i>Polymer</i> , 2007 , 48, 6992-6999	3.9	74
376	Magnetic Mesoporous Fluoropolymer Nanospheres from Plasma Processes and Adsorption of Surface-Functionalized Magnetic Nanoparticles. <i>Plasma Processes and Polymers</i> , 2007 , 4, 390-397	3.4	
375	Functionalization of Titanium Surfaces via Controlled Living Radical Polymerization: From Antibacterial Surface to Surface for Osteoblast Adhesion. <i>Industrial & Discourse Chemistry Research</i> , 2007 , 46, 9077-9086	3.9	58
374	Surface Functionalization of Polyimide Films via Chloromethylation and Surface-Initiated Atom Transfer Radical Polymerization. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4866-4873	3.9	54
373	Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. <i>Biomaterials</i> , 2007 , 28, 5426-36	15.6	139
372	Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. <i>Langmuir</i> , 2007 , 23, 312-9	4	156
371	Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. Journal of Materials Chemistry, 2007 , 17, 3354		139
370	Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. <i>Journal of Applied Physics</i> , 2007 , 102, 024502	2.5	77
369	Antimicrobial surfaces of viologen-quaternized poly((2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. <i>Nanobiotechnology</i> , 2006 , 2, 123-13	34	21
368	A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2947-51	16.4	187
367	In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 76, 826-34	5.4	47

(2006-2006)

366	Surface Functionalization of Fe3O4 Magnetic Nanoparticles via RAFT-Mediated Graft Polymerization. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 1665-1669	4.8	69
365	Heparinized Magnetic Nanoparticles: In-Vitro Assessment for Biomedical Applications. <i>Advanced Functional Materials</i> , 2006 , 16, 1723-1730	15.6	61
364	Immobilization of functional oxide nanoparticles on silicon surfaces via Si-C bonded polymer brushes. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 1458-63	1.3	4
363	Preparation of conductive polypyrrole-palladium composite nanospheres by inverse microemulsion polymerization. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 2571-5	1.3	10
362	POLYMER MICROSPHERES WITH PERMANENT ANTIBACTERIAL SURFACE FROM SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION OF 4-VINYLPYRIDINE AND QUATERNIZATION. <i>Surface Review and Letters</i> , 2006 , 13, 313-318	1.1	21
361	WORM-Type Memory Device Based on a Conjugated Copolymer Containing Europium Complex in the Main Chain. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, G268		38
360	Synthesis and memory properties of a conjugated copolymer of fluorene and benzoate with chelated europium complex. <i>Journal of Applied Physics</i> , 2006 , 100, 084508	2.5	32
359	Modification of Titanium via Surface-Initiated Atom Transfer Radical Polymerization (ATRP). <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3067-3073	3.9	42
358	Synthesis and dynamic random access memory behavior of a functional polyimide. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8732-3	16.4	289
357	Preparation of PolymerBilicon(100) Hybrids via Interface-Initiated Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization. <i>Macromolecules</i> , 2006 , 39, 5577-5582	5.5	84
356	Resist-free micropatterning of binary polymer brushes on Si(100) via surface-initiated living radical polymerizations. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2948		16
355	Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization. <i>Biomacromolecules</i> , 2006 , 7, 809-16	6.9	199
354	Modification of Poly(ether imide) Membranes via Surface-Initiated Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2006 , 39, 1660-1663	5.5	48
353	Conjugated alternating copolymers of fluorene and 2-pyridine-4-ylidenemalononitrile: synthesis, characterization and electroluminescent properties. <i>Journal of Materials Chemistry</i> , 2006 , 16, 376-383		29
352	Bistable electrical switching and memory effects in a thin film of copolymer containing electron donor-acceptor moieties and europium complexes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23995-40	og14	62
351	AMPHIPHILIC COMB-SHAPED DIBLOCK POLYMER BRUSHES ONSI(100) SUBSTRATES VIA SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION. <i>Surface Review and Letters</i> , 2006 , 13, 251-257	1.1	3
350	Thermoresponsive comb-shaped copolymer-Si(100) hybrids for accelerated temperature-dependent cell detachment. <i>Biomaterials</i> , 2006 , 27, 1236-45	15.6	75
349	Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. <i>Biomaterials</i> , 2006 , 27, 2440-9	15.6	304

348	pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. <i>Biomaterials</i> , 2006 , 27, 2787-97	15.6	216
347	Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. <i>Biomaterials</i> , 2006 , 27, 5725-33	15.6	138
346	Influence of oxygen plasma treatment on poly(ether sulphone) films. <i>Polymer Degradation and Stability</i> , 2006 , 91, 12-20	4.7	36
345	Au-Pt bimetallic nanoparticles formation via viologen-mediated reduction on polymeric nanospheres. <i>Journal of Colloid and Interface Science</i> , 2006 , 300, 190-9	9.3	27
344	QCM-D analysis of binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2. <i>Analytical Chemistry</i> , 2006 , 78, 4872-9	7.8	100
343	Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations. <i>Macromolecules</i> , 2005 , 38, 6254-6258	5.5	49
342	Heparin-coupled poly(poly(ethylene glycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. <i>Biomacromolecules</i> , 2005 , 6, 1759-68	6.9	123
341	Surface-initiated atom transfer radical polymerization from halogen-terminated Si(111) (Si-X, X = Cl, Br) surfaces for the preparation of well-defined polymer-Si hybrids. <i>Langmuir</i> , 2005 , 21, 3221-5	4	46
340	Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial. <i>Langmuir</i> , 2005 , 21, 10702-9	4	69
339	Polymer Microspheres with Permanent Antibacterial Surface from Surface-Initiated Atom Transfer Radical Polymerization. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7098-7104	3.9	126
338	Dual-Brush-Type Amphiphilic Triblock Copolymer with Intact Epoxide Functional Groups from Consecutive RAFT Polymerizations and ATRP. <i>Macromolecules</i> , 2005 , 38, 7187-7192	5.5	65
337	Well-Defined Polymer L ermanium Hybrids via Surface-Initiated Atom Transfer Radical Polymerization on Hydrogen-Terminated Ge(100) Substrates. <i>Organometallics</i> , 2005 , 24, 1768-1771	3.8	19
336	Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations. <i>Langmuir</i> , 2005 , 21, 450-6	4	88
335	Rigid Fluorinated Polyimides with Well-Defined Polystyrene/Poly(pentafluorostyrene) Side Chains from Atom Transfer Radical Polymerization. <i>Macromolecules</i> , 2005 , 38, 7593-7600	5.5	43
334	UV-Induced Coupling of 4-Vinylbenzyl Chloride on Hydrogen-Terminated Si(100) Surfaces for the Preparation of Well-Defined PolymerBi Hybrids via Surface-Initiated ATRP. <i>Macromolecules</i> , 2005 , 38, 1573-1580	5.5	69
333	Tadpole-Shaped Amphiphilic Block © raft Copolymers Prepared via Consecutive Atom Transfer Radical Polymerizations. <i>Macromolecules</i> , 2005 , 38, 2612-2619	5.5	62
332	Three-dimensionally ordered porous membranes prepared via self-assembly and reverse micelle formation from well-defined amphiphilic block copolymers. <i>Langmuir</i> , 2005 , 21, 3619-24	4	25
331	Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. <i>Biomacromolecules</i> , 2005 , 6, 1012-	·26 ^{.9}	181

(2005-2005)

330	Synthesis and Electroluminescent Properties of Copolymers Based on Fluorene and 2,5-Di(2-hexyloxyphenyl)thiazolothiazole. <i>Macromolecules</i> , 2005 , 38, 7292-7298	5.5	62
329	Brush-type amphiphilic diblock copolymers from "living"/controlled radical polymerizations and their aggregation behavior. <i>Langmuir</i> , 2005 , 21, 7180-5	4	80
328	Preparation of Cross-Linked Polystyrene Hollow Nanospheres via Surface-Initiated Atom Transfer Radical Polymerizations. <i>Macromolecules</i> , 2005 , 38, 7867-7871	5.5	70
327	Covalent Graft Polymerization and Block Copolymerization Initiated by the Chlorinated SiO2 (SiO2II) Moieties of Glass and Oriented Single Crystal Silicon Surfaces. <i>Macromolecules</i> , 2005 , 38, 1051-	1554	17
326	A New Nitrite-selective Fluorescent Sensor Fabricated from Surface-initiated Atom-transfer Radical Polymerization. <i>Chemistry Letters</i> , 2005 , 34, 1628-1629	1.7	8
325	Controlled release of heparin from polypyrrole-poly(vinyl alcohol) assembly by electrical stimulation. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 73, 171-81	5.4	109
324	GaAs-polymer hybrids formed by surface-initiated atom-transfer radical polymerization of methyl methacrylate. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1104-1107	16.4	32
323	Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. <i>Biotechnology and Bioengineering</i> , 2005 , 89, 474-84	4.9	62
322	Nanoporous Ultra-Low-Dielectric-Constant Fluoropolymer Films via Selective UV Decomposition of Poly(pentafluorostyrene)-block-Poly(methyl methacrylate) Copolymers Prepared Using Atom Transfer Radical Polymerization. <i>Advanced Functional Materials</i> , 2005 , 15, 315-322	15.6	94
321	Preparation of Hollow Silica Nanospheres by Surface-Initiated Atom Transfer Radical Polymerization on Polymer Latex Templates. <i>Advanced Functional Materials</i> , 2005 , 15, 113-117	15.6	70
320	Non-Volatile Polymer Memory Device Based on a Novel Copolymer of N-Vinylcarbazole and Eu-Complexed Vinylbenzoate. <i>Advanced Materials</i> , 2005 , 17, 455-459	24	237
319	Gold Nanocrystal Formation on Viologen-Functionalized Polymeric Nanospheres. <i>Advanced Materials</i> , 2005 , 17, 1656-1661	24	53
318	Nanoporous, Ultralow-Dielectric- Constant Fluoropolymer Films from Agglomerated and Crosslinked Hollow Nanospheres of Poly(pentafluorostyrene)-block-Poly(divinylbenzene). <i>Advanced Materials</i> , 2005 , 17, 2622-2626	24	60
317	Surface-initiated atom transfer radical polymerization on poly(vinylidene fluoride) membrane for antibacterial ability. <i>Macromolecular Bioscience</i> , 2005 , 5, 974-82	5.5	43
316	Antibacterial activity of polymeric substrate with surface grafted viologen moieties. <i>Biomaterials</i> , 2005 , 26, 501-8	15.6	85
315	Deposition of Well-Defined Fluoropolymer Nanospheres on PET Substrate by Plasma Polymerization of Heptadecafluorodecyl Acrylate and Their Potential Application as a Protective Layer. <i>Plasma Processes and Polymers</i> , 2005 , 2, 127-135	3.4	11
314	Plasma Graft Copolymerization of 4-Vinylpyridine on Dense and Porous SiLK for Electroless Plating of Copper and for Retardation of Copper Diffusion. <i>Journal of the Electrochemical Society</i> , 2005 , 152, F107	3.9	11
313	Collagen-coupled poly(2-hydroxyethyl methacrylate)-Si(111) hybrid surfaces for cell immobilization. <i>Tissue Engineering</i> , 2005 , 11, 1736-48		37

312	Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. <i>Journal of Colloid and Interface Science</i> , 2004 , 275, 488-95	9.3	58
311	Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes. <i>Journal of Colloid and Interface Science</i> , 2004 , 279, 78-87	9.3	43
310	Enzymatic activity of glucose oxidase covalently wired via viologen to electrically conductive polypyrrole films. <i>Biosensors and Bioelectronics</i> , 2004 , 19, 823-34	11.8	52
309	Electroless plating of copper on fluorinated polyimide films modified by surface graft copolymerization with 1-vinylimidazole and 4-vinylpyridine. <i>Polymer Engineering and Science</i> , 2004 , 44, 362-375	2.3	37
308	Electroactive polymer patterns with metal incorporation on a polymeric substrate. <i>Polymer Engineering and Science</i> , 2004 , 44, 2061-2069	2.3	
307	Surface modification of polymeric films and membranes to achieve antibacterial properties. <i>Surface and Interface Analysis</i> , 2004 , 36, 716-719	1.5	34
306	Synthesis and characterization of viologen-containing poly(vinylidene fluoride) redox-sensitive membranes. <i>Surface and Interface Analysis</i> , 2004 , 36, 1037-1040	1.5	3
305	Surface and interface characterization of smart membranes. <i>Surface and Interface Analysis</i> , 2004 , 36, 1048-1051	1.5	11
304	Nanoporous Low-Polyimide Films via Poly(amic acid)s with Grafted Poly(ethylene glycol) Side Chains from a Reversible Addition Fragmentation Chain-Transfer-Mediated Process. <i>Advanced Functional Materials</i> , 2004 , 14, 471-478	15.6	45
303	Nanoporous Ultra-Low-l'Films Prepared from Fluorinated Polyimide with Grafted Poly(acrylic acid) Side Chains. <i>Advanced Materials</i> , 2004 , 16, 54-57	24	103
302	Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine). <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 71, 70-80		82
301	Drug permeation through temperature-sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. <i>Journal of Membrane Science</i> , 2004 , 243, 253-	-262	85
300	Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. <i>Thin Solid Films</i> , 2004 , 446, 205-217	2.2	106
299	Metal ion reduction and resultant deposition on viologen-functionalized LDPE films and viologen-containing microporous membranes. <i>Journal of Colloid and Interface Science</i> , 2004 , 279, 391-8	9.3	3
298	Poly(vinyl alcohol) hydrogel fixation on poly(ethylene terephthalate) surface for biomedical application. <i>Polymer</i> , 2004 , 45, 8779-8789	3.9	50
297	Surface modification of SiLK by graft copolymerization with 4-vinylpyridine for reduction in copper diffusion. <i>Applied Surface Science</i> , 2004 , 225, 144-155	6.7	13
296	Chemical states and electronic properties of the interface between aluminium and a photoluminescent conjugated copolymer containing europium complex. <i>Applied Surface Science</i> , 2004 , 222, 399-408	6.7	8
295	Self-doped conductive polymerEilicon hybrids from atom transfer radical graft copolymerization of sodium styrenesulfonate with polyaniline covalently tethered on the Si(100) surface. <i>Journal of Materials Chemistry</i> 2004 14 2674-2682		21

294	Controlled grafting of well-defined epoxide polymers on hydrogen-terminated silicon substrates by surface-initiated ATRP at ambient temperature. <i>Langmuir</i> , 2004 , 20, 8294-300	4	75
293	Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization. <i>Langmuir</i> , 2004 , 20, 6032-40	4	102
292	Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities. <i>Langmuir</i> , 2004 , 20, 6847-52	4	90
291	Nanoporous Low-Dielectric Constant Polyimide Films via Poly(amic acid)s with RAFT-Graft Copolymerized Methyl Methacrylate Side Chains. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6723-6730	3.9	50
290	Functionalization of Hydrogen-Terminated Si(100) Substrate by Surface-Initiated RAFT Polymerization of 4-Vinylbenzyl Chloride and Subsequent Derivatization for Photoinduced Metallization. <i>Industrial & Description Chemistry Research</i> , 2004 , 43, 5194-5202	3.9	56
289	Branched fluoropolymer-Si hybrids via surface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100) surfaces. <i>Langmuir</i> , 2004 , 20, 8200-8	4	54
288	Reactive coupling of 4-vinylaniline with hydrogen-terminated Si(100) surfaces for electroless metal and "synthetic metal" deposition. <i>Langmuir</i> , 2004 , 20, 3324-32	4	13
287	Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. <i>Biomacromolecules</i> , 2004 , 5, 2238-46	6.9	98
286	Surface-active and stimuli-responsive polymerSi(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. <i>Biomacromolecules</i> , 2004 , 5, 2392-403	6.9	175
285	Monochromatic light-emitting copolymers of N-vinylcarbazole and Eu-complexed 4-vinylbenzoate and their single layer high luminance PLEDs. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2741		63
284	Functionalization of Hydrogen-Terminated Silicon with Polybetaine Brushes via Surface-Initiated Reversible Addition Bragmentation Chain-Transfer (RAFT) Polymerization. <i>Industrial & amp; Engineering Chemistry Research</i> , 2004 , 43, 1673-1680	3.9	68
283	Ultra-low-l'materials based on nanoporous fluorinated polyimide with well-defined pores via the RAFT-moderated graft polymerization process. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1406		52
282	Inimer Graft-Copolymerized Poly(vinylidene fluoride) for the Preparation of Arborescent Copolymers and Burface-Active Copolymer Membranes. <i>Macromolecules</i> , 2004 , 37, 7240-7249	5.5	64
281	Electroless Metallization of Dielectric SiLK Surfaces Functionalized by Viologen. <i>Journal of the Electrochemical Society</i> , 2003 , 150, F156	3.9	6
280	Novel Poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) Copolymers for Temperature-Sensitive Microfiltration Membranes. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 11-16	3.9	17
279	Electroless Plating of Copper on Fluorinated Polyimide Films Modified by Plasma Graft Copolymerization and UV-induced Graft Copolymerization with 4-Vinylpyridine. <i>Macromolecular Materials and Engineering</i> , 2003 , 288, 152-163	3.9	20
278	Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. <i>Biotechnology and Bioengineering</i> , 2003 , 84, 305-13	4.9	56
277	Characterization of membranes prepared from blends of poly(acrylic acid)-graft-poly(vinylidene fluoride) with poly(N-isopropylacrylamide) and their temperature- and pH-sensitive microfiltration. <i>Journal of Membrane Science</i> , 2003 , 224, 93-106	9.6	87

276	pH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes. <i>Journal of Colloid and Interface Science</i> , 2003 , 265, 396-403	9.3	32
275	Thermal imidization of poly(pyromellitic dianhydride-4,4?-oxydianiline) precursors on fluoropolymers modified by surface graft-copolymerization with glycidyl methacrylate. <i>Journal of Fluorine Chemistry</i> , 2003 , 119, 151-160	2.1	4
274	Polyanilinepalladium composite coatings for metallization of polyethylene substrate. <i>Applied Surface Science</i> , 2003 , 218, 232-245	6.7	2
273	Poly(2-vinylpyridine)- and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes. <i>Journal of Membrane Science</i> , 2003 , 217, 243-259	9.6	51
272	Surface functionalization of polypyrrole film with glucose oxidase and viologen. <i>Biosensors and Bioelectronics</i> , 2003 , 18, 363-74	11.8	48
271	Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces. <i>Langmuir</i> , 2003 , 19, 10295-10303	4	175
270	Deposition of Ultrathin Fluoropolymer Films on Si(100) and GaAs(100) Surfaces by RF Magnetron Sputtering of Poly(tetrafluoroethylene-co-hexafluoropropylene). <i>Journal of Physical Chemistry B</i> , 2003 , 107, 2780-2787	3.4	5
269	Controlled Grafting of Well-Defined Polymers on Hydrogen-Terminated Silicon Substrates by Surface-Initiated Atom Transfer Radical Polymerization. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 1019	98 :1 02	0 ^{‡14}
268	Redox-Sensitive Microporous Membranes Prepared from Poly(vinylidene fluoride) Grafted with Viologen-Containing Polymer Side Chains. <i>Macromolecules</i> , 2003 , 36, 8361-8367	5.5	32
267	Immobilization of galactose ligands on acrylic acid graft-copolymerized poly(ethylene terephthalate) film and its application to hepatocyte culture. <i>Biomacromolecules</i> , 2003 , 4, 157-65	6.9	133
266	Surface Passivation of (100)-Oriented GaAs via Plasma Deposition of an Ultrathin S-Containing Polymer Film and Its Effect on Photoluminescence. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8592-859	9 ^{3.4}	14
265	Characterization of Electrolessly Deposited Copper and Nickel Nanofilms on Modified Si(100) Surface. <i>Langmuir</i> , 2003 , 19, 6802-6806	4	10
264	Deposition of Nanostructured Fluoropolymer Films on Silicon Substrates via Plasma Polymerization of Allylpentafluorobenzene. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13902-13910	3.4	19
263	Nanoscaled Metal Coatings and Dispersions Prepared Using Viologen Systems. <i>Langmuir</i> , 2003 , 19, 513	7 ₄ 5144	8
262	pH-Sensitive Fluorinated Polyimides with Grafted Acid and Base Side Chains. <i>Industrial & amp; Engineering Chemistry Research</i> , 2003 , 42, 784-794	3.9	17
261	Synthesis and Characterization of Fluorinated Polyimide with Grafted Poly(N-isopropylacrylamide) Side Chains and the Temperature-Sensitive Microfiltration Membranes. <i>Industrial & Description of Chemistry Research</i> , 2003 , 42, 3740-3749	3.9	18
260	Synthesis and Nearly Monochromatic Photoluminescence Properties of Conjugated Copolymers Containing Fluorene and Rare Earth Complexes. <i>Macromolecules</i> , 2003 , 36, 6995-7003	5.5	64
259	Surface Modification of Polyimide Films via Plasma-Enhanced Chemical Vapor Deposition of Thin Silica and Nitride Films. <i>Langmuir</i> , 2003 , 19, 6845-6850	4	12

(2002-2003)

258	Poly(vinylidene fluoride) with Grafted Zwitterionic Polymer Side Chains for Electrolyte-Responsive Microfiltration Membranes. <i>Langmuir</i> , 2003 , 19, 7030-7037	4	78
257	Poly(vinylidene fluoride) with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes. <i>Macromolecules</i> , 2003 , 36, 9451-9457	5.5	117
256	Nanoporous low-[polyimide films prepared from poly(amic acid)s with grafted poly(methylmethacrylate)/poly(acrylamide) side chains. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2150		37
255	Surface Passivation of (100)-Oriented GaAs with Ultrathin Fluoropolymer Films Deposited by Radio Frequency Magnetron Sputtering of Poly(tetrafluoroethylene). <i>Journal of the Electrochemical Society</i> , 2003 , 150, F53	3.9	1
254	Fluorinated ethylene propylene copolymer coating for the stability enhancement of electroactive and photoactive systems. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2003 , 21, 1865-1872	2.9	
253	Environmental stability of electrically conductive viologen polyaniline systems. <i>Journal of Applied Polymer Science</i> , 2002 , 86, 2099-2107	2.9	6
252	Plasma polymerization of aniline on different surface functionalized substrates. <i>Journal of Colloid and Interface Science</i> , 2002 , 251, 214-24	9.3	45
251	Electroless polymerization of aniline on platinum and palladium surfaces. <i>Applied Surface Science</i> , 2002 , 185, 267-276	6.7	37
250	Preparation and characterization of semi-conductive poly(vinylidene fluoride)/polyaniline blends and membranes. <i>Applied Surface Science</i> , 2002 , 193, 36-45	6.7	49
249	Interface formation between the Al electrode and poly[2,7-(9,9-dihexylfluorene)-co-alt-2,5-(decylthiophene)] (PFT) investigated in situ by XPS. <i>Applied Surface Science</i> , 2002 , 199, 74-82	6.7	22
248	Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. <i>Journal of Membrane Science</i> , 2002 , 195, 103-114	9.6	208
247	Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains. <i>Journal of Membrane Science</i> , 2002 , 208, 361-374	9.6	126
246	Plasma-induced graft polymerization of poly(ethylene glycol) methyl ether methacrylate on poly(tetrafluoroethylene) films for reduction in protein adsorption. <i>Surface and Coatings Technology</i> , 2002 , 149, 119-128	4.4	52
245	Characterization of fluoropolymer films deposited by magnetron sputtering of poly(tetrafluoroethylene) and plasma polymerization of heptadecafluoro-1-decene (HDFD) on (100)-oriented single-crystal silicon substrates. <i>Surface and Interface Analysis</i> , 2002 , 34, 10-18	1.5	16
244	In situ interfacial analysis of evaporated potassium on the electroluminescent fluorenethiophene copolymer. <i>Surface and Interface Analysis</i> , 2002 , 33, 552-558	1.5	1
243	Oxidative graft polymerization of aniline on Si(100) surface modified by plasma polymerization of glycidyl methacrylate. <i>Polymer Engineering and Science</i> , 2002 , 42, 1181-1196	2.3	6
242	Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers. <i>Polymer</i> , 2002 , 43, 4137-4146	3.9	81
241	Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene. <i>Polymer</i> , 2002 , 43, 7279-7288	3.9	32

240	Reactive coupling of poly(ethylene glycol) on electroactive polyaniline films for reduction in protein adsorption and platelet adhesion. <i>Biomaterials</i> , 2002 , 23, 787-95	15.6	42
239	Electroless plating of copper on polyimide films modified by plasma graft copolymerization with 4-vinylpyridine. <i>Applied Surface Science</i> , 2002 , 199, 52-66	6.7	53
238	Electroless deposition of nickel on fluoropolymers modified by surface graft copolymerization. <i>European Polymer Journal</i> , 2002 , 38, 2153-2160	5.2	23
237	Plasma-Induced Graft Polymerization of Poly(ethylene glycol) Methyl Ether Methacrylate on Si(100) Surfaces for Reduction in Protein Adsorption and Platelet Adhesion. <i>Plasmas and Polymers</i> , 2002 , 7, 15	1-170	17
236	Electroless Deposition of Copper on Poly(tetrafluoroethylene) Films Modified by Plasma-Induced Surface Grafting of Poly(4-vinylpyridine). <i>Plasmas and Polymers</i> , 2002 , 7, 207-225		13
235	Electroless Plating of Copper on Poly(tetrafluoroethylene) Films Modified by Surface Graft Copolymerization and Quaternization. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C10	3.9	10
234	Electroless Plating of Copper on (100)-Oriented Single Crystal Silicon Substrates Modified by Plasma Graft Polymerization of 4-Vinylpyridine. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C592	3.9	4
233	Antifouling poly(vinylidene fluoride) microporous membranes prepared via plasma-induced surface grafting of poly(ethylene glycol). <i>Journal of Adhesion Science and Technology</i> , 2002 , 16, 111-127	2	29
232	Selective Electroless Plating of Copper on (100)-Oriented Single Crystal Silicon Surface Modified by UV-Induced Coupling of 4-Vinylpyridine with the H-Terminated Silicon. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12508-12516	3.4	20
231	Amidoximation of the Acrylonitrile Polymer Grafted on Poly(Tetrafluoroethylene-co-hexafluoropropylene) Films and Its Relevance to the Electroless Plating of Copper. <i>Langmuir</i> , 2002 , 18, 10221-10230	4	52
230	Oxidative Graft Polymerization of Aniline on PTFE Films Modified by Surface Hydroxylation and Silanization. <i>Langmuir</i> , 2002 , 18, 9035-9040	4	48
229	Photoinduced and Thermal-Activated Doping of Polyaniline. <i>Chemistry of Materials</i> , 2002 , 14, 1098-110	6 9.6	20
228	Electroless Plating of Copper via a Sn-Free Process on Dielectric SiLK Surface Modified by UV-Induced Graft Copolymerization with 4-Vinylpyridine and 1-Vinylimidazole. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C521	3.9	26
227	Surface Functionalization of Electrically Conductive Polypyrrole Film with Hyaluronic Acid. <i>Langmuir</i> , 2002 , 18, 8633-8640	4	44
226	Deposition of Fluoropolymer Films on Si(100) Surfaces by Rf Magnetron Sputtering of Poly(tetrafluoroethylene). <i>Langmuir</i> , 2002 , 18, 6373-6380	4	45
225	Synthesis and Characterization of Poly(acrylic acid)-graft-poly(vinylidene fluoride) Copolymers and pH-Sensitive Membranes. <i>Macromolecules</i> , 2002 , 35, 673-679	5.5	143
224	Plasma polymerization of allylpentafluorobenzene on copper surfaces. <i>Journal of Materials Chemistry</i> , 2002 , 12, 426-431		15
223	Surface Functionalization of Glass and Polymeric Substrates via Graft Copolymerization of Viologen in an Aqueous Medium. <i>Langmuir</i> , 2002 , 18, 2914-2921	4	27

(2001-2002)

222	poly(tetrafluoroethylene-co-hexafluoropropylene) films modified by surface graft copolymerization. <i>IEEE Transactions on Advanced Packaging</i> , 2002 , 25, 365-373		5	
221	Synthesis and Characterization of Poly(vinylidene fluoride) with Grafted Acid/Base Polymer Side Chains. <i>Macromolecules</i> , 2002 , 35, 9653-9656	5.5	27	
220	Synthesis and Characterization of Poly(N-isopropylacrylamide)-graft-Poly(vinylidene fluoride) Copolymers and Temperature-Sensitive Membranes. <i>Langmuir</i> , 2002 , 18, 6416-6423	4	95	
219	Viologen-Functionalized Conductive Surfaces: Physicochemical and Electrochemical Characteristics, and Stability. <i>Langmuir</i> , 2002 , 18, 9041-9047	4	31	
218	Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 1955	2.9	18	
217	Poly(vinylidene fluoride) with grafted 4-vinylpyridine polymer side chains for pH-sensitive microfiltration membranes. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3508-3515		32	
216	Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy. <i>Colloid and Polymer Science</i> , 2001 , 279, 73-76	2.4	66	
215	Electroless deposition of copper on polyimide films modified by surface graft copolymerization with nitrogen-containing vinyl monomers. <i>Colloid and Polymer Science</i> , 2001 , 279, 745-753	2.4	43	
214	Interaction of copper atoms with surface graft-copolymerized poly(tetrafluoroethylene) film: an in situ X-ray photoelectron spectroscopic study. <i>Applied Surface Science</i> , 2001 , 174, 296-305	6.7	13	
213	In situ XPS studies of thermally deposited potassium on poly(p-phenylene vinylene) and its ring-substituted derivatives. <i>Applied Surface Science</i> , 2001 , 181, 201-210	6.7	36	
212	Determination of pyrroleliniline copolymer compositions by X-ray photoelectron spectroscopy. <i>Applied Surface Science</i> , 2001 , 181, 317-326	6.7	37	
211	Thermal imidization of poly(amic acid) precursors on glycidyl methacrylate (GMA) graft-polymerized aluminium and copper surfaces. <i>Polymer</i> , 2001 , 42, 453-462	3.9	12	
210	Surface modification of poly(tetrafluoroethylene) films by plasma polymerization of glycidyl methacrylate for adhesion enhancement with evaporated copper. <i>Polymer</i> , 2001 , 42, 6409-6418	3.9	25	
209	Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. <i>Biomaterials</i> , 2001 , 22, 1541-8	15.6	190	
208	Surface modification of aluminum foil and PTFE film by graft polymerization for adhesion enhancement. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2001 , 176, 139-150	5.1	25	
207	Plasma polymerization and deposition of glycidyl methacrylate on Si(100) surface for adhesion improvement with polyimide. <i>Polymers for Advanced Technologies</i> , 2001 , 12, 583-595	3.2	16	
206	Adhesion enhancement of evaporated copper on HDPE surface modified by plasma polymerization of glycidyl methacrylate. <i>Polymer Engineering and Science</i> , 2001 , 41, 1752-1761	2.3	3	
205	Crosslinking and its effects on polyaniline films. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 1-9	2.9	11	

204	Lamination of conductive polypyrrole films to poly(tetrafluoroethylene) films via interfacial graft copolymerization. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 716-727	2.9	8
203	Preparation of Nanosized Metallic Particles in Polyaniline. <i>Journal of Colloid and Interface Science</i> , 2001 , 239, 78-86	9.3	113
202	Surface modification of low-density polyethylene films by UV-induced graft copolymerization with a fluorescent monomer. <i>Journal of Applied Polymer Science</i> , 2001 , 80, 1526-1534	2.9	10
201	Water-Soluble Polyaniline from ERay-Induced N-Acylation Graft Copolymerization with Acrylic Acid in the Emeraldine State. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 785-793	2.6	6
200	Physicochemical Interactions of Deposited Copper Atoms with Chemically Synthesized Polypyrrole Films IAn In-Situ X-Ray Photoelectron Spectroscopy Study. <i>Macromolecular Chemistry and Physics</i> , 2001 , 202, 2824-2831	2.6	5
199	Modification of gold surface by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2001 , 12, 515-31	3.5	64
198	Evaporated copper on surface modified polyaniline films. <i>Applied Surface Science</i> , 2001 , 173, 242-251	6.7	8
197	Electroless deposition of copper and nickel on poly(tetrafluoroethylene) films modified by single and double surface graft copolymerization. <i>Applied Surface Science</i> , 2001 , 178, 165-177	6.7	30
196	Surface passivation of epoxy resin with a covalently adhered poly(tetrafluoroethylene) layer. <i>Surface and Coatings Technology</i> , 2001 , 138, 48-55	4.4	6
195	Electroless Plating of Copper and Nickel on Surface-Modified Poly(tetrafluoroethylene) Films. Journal of the Electrochemical Society, 2001 , 148, C71	3.9	37
194	In situ x-ray photoelectron spectroscopy study of evaporated magnesium on chemically synthesized polypyrrole films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 2680-2688	2.9	3
193	Modification of Si(100) surface by plasma-enhanced graft polymerization of allylpentafluorobenzene. <i>Journal of Adhesion Science and Technology</i> , 2001 , 15, 1655-1672	2	4
192	Surface modification of poly(tetrafluoroethylene) films by plasma polymerization and UV-induced graft copolymerization for adhesion enhancement with electrolessly-deposited copper. <i>Journal of Adhesion Science and Technology</i> , 2001 , 15, 727-746	2	6
191	Thermal imidization of fluorinated poly(amic acid) precursors on a glycidyl methacrylate graft-polymerized Si(100) surface. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 547-556	2.9	10
190	Thermal Imidization of Fluorinated Poly(amic acid)s on Si(100) Surfaces Modified by Plasma Polymerization and Deposition of Glycidyl Methacrylate. <i>Langmuir</i> , 2001 , 17, 2265-2274	4	27
189	Synthesis, characterization and anti-foulingproperties of poly(ethylene glycol) grafted poly(vinylidenefluoride) copolymer membranes. <i>Journal of Materials Chemistry</i> , 2001 , 11, 783-789		112
188	Electroless plating of copper on poly(tetrafluoroethylene) films modified by NH3 plasma and surface graft copolymerization with aniline. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2001 , 19, 2471-2478	2.9	12
187	Oxidative Graft Polymerization of Aniline on Modified Si(100) Surface. <i>Macromolecules</i> , 2001 , 34, 3133-	34.41	26

186	Electroless plating of palladium and copper on polypyrrole films. Synthetic Metals, 2001, 123, 107-115	3.6	56
185	Surface modification of polypyrrole films via grafting of poly(ethylene glycol) for improved biocompatibility. <i>Synthetic Metals</i> , 2001 , 119, 261-262	3.6	16
184	Interactions between polyaniline and viologens. Synthetic Metals, 2001, 123, 263-266	3.6	10
183	Synthesis and Characterization of Poly(ethylene glycol)-Grafted Polyaniline. <i>Chemistry of Materials</i> , 2001 , 13, 581-587	9.6	59
182	Surface functionalization of low density polyethylene films with grafted poly(ethylene glycol) derivatives. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2951-2957		50
181	Surface Graft Copolymerization of Viologens on Polymeric Substrates. <i>Langmuir</i> , 2001 , 17, 1766-1772	4	17
180	Conversion of Polyaniline from Insulating to Conducting State in Aqueous Viologen Solutions. Journal of Physical Chemistry B, 2001 , 105, 5618-5625	3.4	33
179	Surface Graft Copolymerization of Poly(tetrafluoroethylene) Films with N-Containing Vinyl Monomers for the Electroless Plating of Copper. <i>Langmuir</i> , 2001 , 17, 211-218	4	79
178	Electroless Metallization of Glass Surfaces Functionalized by Silanization and Graft Polymerization of Aniline. <i>Langmuir</i> , 2001 , 17, 7425-7432	4	38
177	Electroless Plating of Copper and Nickel via a Sn-Free Process on Polyimide Films Modified by Surface Graft Copolymerization with 1-Vinylimidazole. <i>Journal of the Electrochemical Society</i> , 2001 , 148, C574	3.9	33
176	Reactive adsorption of aminosilane onto the glycidyl methacrylate graft-copolymerized poly(tetrafluoroethylene) film surface for adhesion enhancement with evaporated copper. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 80-89	2.5	10
175	Electrofiltration of Aqueous Suspensions. <i>Journal of Colloid and Interface Science</i> , 2000 , 228, 393-404	9.3	8
174	Flexible Smart Window via Surface Graft Copolymerization of Viologen on Polyethylene. <i>Advanced Materials</i> , 2000 , 12, 1536-1539	24	87
173	Surface modification of poly(tetrafluoroethylene) films by plasma polymerization of glycidyl methacrylate and its relevance to the electroless deposition of copper. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 3498-3509	2.5	31
172	Covalent immobilization of invertase onto the surface-modified polyaniline from graft copolymerization with acrylic acid. <i>European Polymer Journal</i> , 2000 , 36, 2095-2103	5.2	79
171	Oxidation and ion migration during synthesis and degradation of electroactive polymerflylon 6 composite films. <i>Polymer</i> , 2000 , 41, 9-15	3.9	22
170	Low-temperature graft copolymerization of 1-vinyl imidazole on polyimide films with simultaneous lamination to copper foils affect of crosslinking agents. <i>Polymer</i> , 2000 , 41, 489-498	3.9	41
169	Chemical modification of polyaniline powders by surface graft copolymerization. <i>Polymer</i> , 2000 , 41, 32	79 . 328	731

168	Surface modification of plasma-pretreated high density polyethylene films by graft copolymerization for adhesion improvement with evaporated copper. <i>Polymer Engineering and Science</i> , 2000 , 40, 1047-1055	2.3	20
167	Chemical modification of Si(100) surface by consecutive graft polymerization of 4-vinylaniline and aniline. <i>Reactive and Functional Polymers</i> , 2000 , 46, 145-156	4.6	14
166	Modification of poly(tetrafluoroethylene) and copper foil surfaces by graft polymerization for adhesion improvement. <i>International Journal of Adhesion and Adhesives</i> , 2000 , 20, 467-476	3.4	9
165	Surface Modification of Poly(tetrafluoroethylene) Films by Plasma Pre-Activation and Plasma Polymerization of Glycidyl Methacrylate. <i>Plasmas and Polymers</i> , 2000 , 5, 219-234		8
164	SURFACE MODIFICATION OF POLY(VINYLIDENE FLUORIDE) FILMS BY GRAFT COPOLYMERIZATION FOR ADHESION IMPROVEMENT WITH EVAPORATED METALS. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2000 , 37, 1121-1139	2.2	5
163	Thermal imidization of poly(amic acid) on Si(100) surface modified by plasma polymerization of glycidyl methacrylate. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 1723-1744	2	10
162	Surface modification of poly(tetrafluoroethylene) films by graft copolymerization for adhesion enhancement with electrolessly deposited copper. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 1451-1468	2	16
161	Modification of poly(tetrafluoroethylene) and gold surfaces by thermal graft copolymerization for adhesion improvement. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 507-527	2	4
160	Surface modification of polyaniline film by grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. <i>Synthetic Metals</i> , 2000 , 110, 47-55	3.6	53
159	In situ XPS study of the interactions of evaporated copper atoms with poly(p-phenylene vinylene) and its ring-substituted derivatives. <i>Surface Science</i> , 2000 , 454-456, 990-994	1.8	9
158	Consecutive Graft Copolymerization of Glycidyl Methacrylate and Aniline on Poly(Tetrafluoroethylene) Films. <i>Langmuir</i> , 2000 , 16, 9666-9672	4	41
157	Adhesion and adhesion reliability enhancement of evaporated copper on surface modified poly(tetrafluoroethylene) films from graft copolymerization. <i>IEEE Transactions on Advanced Packaging</i> , 2000 , 23, 538-545		8
156	Chemical deposition of palladium on leucoemeraldine from solutions: state and distribution of palladium species. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1933-1938		26
155	ConcurrentN-Alkylation and Doping of Polyaniline by Alkyl Halides. <i>Chemistry of Materials</i> , 2000 , 12, 18	309 . 480	0638
154	N-Alkylation of Polyaniline with Simultaneous Surface Graft Copolymerization for Inducing and Maintaining a Conductive State. <i>Langmuir</i> , 2000 , 16, 10540-10546	4	14
153	Surface Functionalization of Poly(tetrafluoroethylene) Films via Consecutive Graft Copolymerization with Glycidyl Methacrylate and Aniline. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 91	74-91	78 ²⁸
152	Electroless Deposition of Copper on Surface Modified Poly(tetrafluoroethylene) Films from Graft Copolymerization and Silanization. <i>Langmuir</i> , 2000 , 16, 5192-5198	4	43
151	Thermal imidization of poly(amic acid) precursors on surface-modified poly(tetrafluoroethylene) films via graft copolymerization with glycidyl methacrylate. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 897-914	2	7

150	Electroactive polymerBiO 2 nanocomposites for metal uptake. <i>Polymer</i> , 1999 , 40, 887-893	3.9	83
149	Effects of crosslinking on polyaniline films@oping behavior and degradation under weathering. <i>Polymer</i> , 1999 , 40, 5285-5296	3.9	11
148	Surface modification of poly(tetrafluoroethylene) films by double graft copolymerization for adhesion improvement with evaporated copper. <i>Polymer</i> , 1999 , 40, 6955-6964	3.9	25
147	Effect of plasma treatment on the electrical and electroluminescent properties of poly(p-phenylene vinylene) light emitting diodes. <i>Polymer Degradation and Stability</i> , 1999 , 63, 53-59	4.7	6
146	Thermally induced surface graft copolymerization with concurrent lamination of polyaniline films under atmospheric conditions. <i>International Journal of Adhesion and Adhesives</i> , 1999 , 19, 359-365	3.4	13
145	Stability studies of poly(2-methoxy-5-(2?-ethyl hexyloxy)-p- (phenylene vinylene) [MEH-PPV]. <i>Polymer Degradation and Stability</i> , 1999 , 65, 287-296	4.7	64
144	Surface graft copolymerization induced adhesion of polyaniline film to polytetrafluoroethylene film and copper foil. <i>European Polymer Journal</i> , 1999 , 35, 1279-1288	5.2	16
143	Low-temperature thermal graft copolymerization of 1-vinyl imidazole on fluorinated polyimide films with simultaneous lamination of copper foils. <i>Journal of Applied Polymer Science</i> , 1999 , 74, 1478-1	4 8 9	5
142	Adhesion improvement of polytetrafluoroethylene/metal interface by graft copolymerization. <i>Surface and Interface Analysis</i> , 1999 , 28, 235-239	1.5	8
141	Surface Modification of Poly(tetrafluoroethylene) Films by Graft Copolymerization for Adhesion Improvement with Evaporated Copper. <i>Macromolecules</i> , 1999 , 32, 186-193	5.5	107
140	Chemical Modification of Silicon (100) Surface via UV-Induced Graft Polymerization. <i>Chemistry of Materials</i> , 1999 , 11, 1061-1068	9.6	31
139	Adhesion enhancement of thermally evaporated aluminum to surface graft copolymerized poly(tetrafluoroethylene) film. <i>Journal of Adhesion Science and Technology</i> , 1999 , 13, 819-835	2	8
138	Surface graft copolymerization enhanced adhesion of an epoxy-based printed circuit board substrate (FR-4) to copper. <i>IEEE Transactions on Advanced Packaging</i> , 1999 , 22, 214-220		9
137	Super-hard-surfaced polyaniline films by bulk and surface modifications. <i>Synthetic Metals</i> , 1999 , 101, 696	3.6	4
136	In situ XPS study of thermally deposited aluminium on chemically synthesized polypyrrole films. <i>Synthetic Metals</i> , 1999 , 106, 1-11	3.6	30
135	Surface graft copolymerization of poly(tetrafluoroethylene) film with simultaneous lamination to copper foil. <i>Journal of Adhesion Science and Technology</i> , 1999 , 13, 293-307	2	10
134	Enhancement of Electrical Stability of Polyaniline Films in Aqueous Media by Surface Graft Copolymerization with Hydrophobic Monomers. <i>Langmuir</i> , 1999 , 15, 8259-8264	4	18
133	Surface Modification of Poly(tetrafluoroethylene) Film by Consecutive Graft Copolymerization with 4-Vinylaniline and Aniline. <i>Macromolecules</i> , 1999 , 32, 8183-8188	5.5	25

132	Surface graft copolymerization of low density polyethylene films and its relevance to auto-adhesion. <i>European Polymer Journal</i> , 1998 , 34, 1429-1434	5.2	11
131	Polyaniline: A polymer with many interesting intrinsic redox states. <i>Progress in Polymer Science</i> , 1998 , 23, 277-324	29.6	1264
130	Surface modification and adhesion characteristics of polycarbonate films after graft copolymerization. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 357-366	2.5	14
129	Surface modification of polytetrafluoroethylene films via graft copolymerization for auto-adhesion. <i>Journal of Polymer Science Part A</i> , 1998 , 36, 3107-3114	2.5	20
128	Low-temperature graft copolymerization of 1-vinyl imidazole on low-density polyethylene films with simultaneous lamination of copper foils. <i>Journal of Applied Polymer Science</i> , 1998 , 70, 1977-1983	2.9	11
127	Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. <i>Biomaterials</i> , 1998 , 19, 45-53	15.6	90
126	Surface modification of polymer films by graft copolymerization for adhesive-free adhesion. <i>Polymer</i> , 1998 , 39, 2429-2436	3.9	26
125	Synthesis, characterization and catalytic properties of palladium-containing electroactive polymers. <i>Synthetic Metals</i> , 1998 , 96, 117-122	3.6	52
124	Protonation and deprotonation of polyaniline films and powders: effects of acid and base concentrations on the surface intrinsic oxidation states. <i>Synthetic Metals</i> , 1998 , 92, 167-171	3.6	14
123	Enhancement of Growth and Adhesion of Electroactive Polymer Coatings on Polyolefin Substrates. <i>Langmuir</i> , 1998 , 14, 2820-2826	4	32
122	Surface Modification of Low-Density Polyethylene Films by UV-Induced Graft Copolymerization and Its Relevance to Photolamination. <i>Langmuir</i> , 1998 , 14, 921-927	4	43
121	Low-temperature thermal graft copolymerization of 1-vinyl imidazole on polyimide films with simultaneous lamination to copper foils. <i>Journal of Adhesion Science and Technology</i> , 1998 , 12, 889-900	2	16
120	Adhesion improvement of a poly(tetrafluoroethylene)- copper laminate by thermal graft copolymerization. <i>Journal of Adhesion Science and Technology</i> , 1998 , 12, 1205-1218	2	14
119	Surface photografting of low-density polyethylene films and its relevance to photolamination. <i>Journal of Adhesion Science and Technology</i> , 1997 , 11, 1211-1227	2	9
118	Surface structures and adhesion enhancement of poly(tetrafluoroethylene) films after modification by graft copolymerization with glycidyl methacrylate. <i>Journal of Adhesion Science and Technology</i> , 1997 , 11, 679-693	2	51
117	Surface Structures and Adhesive-Free Adhesion Characteristics of Polyaniline Films after Modification by Graft Copolymerization. <i>Macromolecules</i> , 1997 , 30, 3354-3362	5.5	33
116	Oxidation R eduction Interactions between Electroactive Polymer Thin Films and Au(III) Ions in Acid Solutions. <i>Chemistry of Materials</i> , 1997 , 9, 2906-2912	9.6	75
115	Surface-Functionalized Polyaniline Films. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 10744-10750	3.4	34

114	Limitations of the X-ray Photoelectron Spectroscopy Technique in the Study of Electroactive Polymers. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 726-731	3.4	56
113	Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films. <i>Synthetic Metals</i> , 1997 , 87, 45-52	3.6	58
112	Surface modified and functionalized polyaniline and polypyrrole films. Synthetic Metals, 1997 , 84, 59-60	3.6	12
111	Synthesis and characterization of polyacenic complexes. <i>Synthetic Metals</i> , 1997 , 84, 405-406	3.6	4
110	Structural and mechanical degradation of polypyrrole films due to aqueous media and heat treatment and the subsequent redoping characteristics. <i>Journal of Applied Polymer Science</i> , 1997 , 64, 519-526	2.9	47
109	Surface modification and functionalization of polytetrafluoroethylene films via graft copolymerization. <i>Polymers for Advanced Technologies</i> , 1997 , 8, 683-692	3.2	19
108	Structure and Degradation Behavior of Polypyrrole Doped with Sulfonate Anions of Different Sizes Subjected to UndopingRedoping Cycles. <i>Chemistry of Materials</i> , 1996 , 8, 167-172	9.6	66
107	Modification of substrate surface for BGA overmold adhesion enhancement by graft copolymerization. <i>Materials Research Bulletin</i> , 1996 , 31, 1361-1373	5.1	6
106	Surface studies of pristine and surface-modified polypyrrole films. <i>Journal of Applied Polymer Science</i> , 1996 , 60, 625-636	2.9	28
105	The protonation-deprotonation hysteresis in polyaniline. <i>Polymer</i> , 1996 , 37, 925-929	3.9	13
104	Surface structures and adhesion characteristics of poly(tetrafluoroethylene) films after modification by graft copolymerization. <i>Journal of Adhesion Science and Technology</i> , 1996 , 10, 725-743	2	41
103	Spectroscopic studies of the effects of salt addition in the protonation and deprotonation of emeraldine films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1995 , 33, 833-839	2.6	3
102	Polyaniline treated with organic acids: doping characteristics and stability. <i>Synthetic Metals</i> , 1995 , 73, 209-215	3.6	129
101	Charge transfer interactions between polyaniline and surface functionalized polymer substrates. <i>Synthetic Metals</i> , 1995 , 69, 105-108	3.6	8
100	Electroless recovery of precious metals from acid solutions by N-containing electroactive polymers. <i>Synthetic Metals</i> , 1995 , 69, 477-478	3.6	60
99	Protonation and deprotonation of polyaniline films and powders revisited. <i>Synthetic Metals</i> , 1995 , 68, 141-144	3.6	29
98	Protonation of polyaniline by surface-functionalized polymer substrates. <i>Journal of Applied Polymer Science</i> , 1995 , 56, 355-364	2.9	17
97	Near-u.v. radiation induced surface graft copolymerization of some O3-pretreated conventional polymer films. <i>European Polymer Journal</i> , 1995 , 31, 481-488	5.2	23

96	Recovery of gold by electroless precipitation from acid solutions using polyaniline. <i>Journal of Chemical Technology and Biotechnology</i> , 1994 , 59, 31-36	3.5	69
95	X-ray photoelectron spectroscopic studies of charge transfer interactions in electroactive polyaniline. <i>Polymers for Advanced Technologies</i> , 1994 , 5, 171-177	3.2	24
94	Surface structures of fluoropolymer, polyolefin and polyester films after modification by graft polymerization. <i>Polymers for Advanced Technologies</i> , 1994 , 5, 837-842	3.2	15
93	Charge transfer interactions and redox states in ring-substituted polyanilines and their complexes. <i>European Polymer Journal</i> , 1994 , 30, 529-535	5.2	18
92	Polyaniline salt films after deprotonation: structural differences from pristine emeraldine base. <i>Polymer Degradation and Stability</i> , 1994 , 45, 77-81	4.7	7
91	Degradation behavior of polyanilines with different modes of doping. <i>Polymer Degradation and Stability</i> , 1994 , 43, 141-147	4.7	19
90	X-ray photoelectron spectroscopic characterization of protonation of polyaniline films by polymeric acids. <i>Polymer</i> , 1994 , 35, 3193-3199	3.9	22
89	Protonation of polyaniline films: effects of anion size and film structure. <i>Polymer</i> , 1994 , 35, 2899-2901	3.9	10
88	Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. <i>Polymer</i> , 1994 , 35, 504-508	3.9	96
87	The intrinsic redox states and protonation behavior of poly(o-toluidine). Synthetic Metals, 1994, 64, 77-8	33 .6	7
86	Thermogravimetry ITIR study of the surface formate decomposition on Cu, CuCl, Cu2O and CuO. Correlations between reaction selectivity and structural properties. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 355-362		15
85	Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization. <i>Macromolecules</i> , 1993 , 26, 2832-2836	5.5	259
84	XPS/FTIR study of the interaction between nitric oxide and yttrium barium copper oxide (YBa2Cu3O7). <i>Inorganic Chemistry</i> , 1993 , 32, 5522-5527	5.1	10
83	Co-existence of external protonation and self-doping in polyaniline. <i>Synthetic Metals</i> , 1993 , 60, 13-21	3.6	32
82	The interaction between carbon monoxide and yttrium barium copper oxide, YBa2Cu3Ox, as studied by TG/DTA, FTIR, and XPS. <i>Inorganic Chemistry</i> , 1993 , 32, 3093-3098	5.1	6
81	Surface studies of chemically processed polyaniline films. <i>Synthetic Metals</i> , 1993 , 53, 333-345	3.6	35
80	Surface modification and functionalization of polyaniline and poly(3-alkylthiophene) films by graft copolymerization. <i>Synthetic Metals</i> , 1993 , 55, 1232-1237	3.6	7
79	Static SIMS of conjugated polymers: films of the substituted polyacetylenes. <i>Synthetic Metals</i> , 1993 , 53, 193-203	3.6	6

78	Chlorine substitution in poly(arylamine)s during synthesis and protonation in hydrochloric acid. <i>Polymer Degradation and Stability</i> , 1993 , 40, 357-363	4.7	1	
77	Surface photodegradation and modification of some substituted polyacetylene films. <i>Polymer Degradation and Stability</i> , 1993 , 40, 45-52	4.7	7	
76	Spontaneous and sustained gold reduction by polyaniline in acid solution. <i>Polymer</i> , 1993 , 34, 4994-4996	3.9	40	
75	Protonation and deprotonation behaviour of amine units in polyaniline. <i>Polymer</i> , 1993 , 34, 1630-1636	3.9	31	
74	Evolution of polyaniline structure during synthesis. <i>Polymer</i> , 1993 , 34, 3921-3928	3.9	55	
73	Measurement of BOD by initial rate of response of a microbial sensor. <i>Sensors and Actuators B:</i> Chemical, 1993 , 10, 137-142	8.5	52	
72	Polyaniline with high intrinsic oxidation state. Surface and Interface Analysis, 1993, 20, 833-840	1.5	46	
71	Protonation of leucoemeraldine in the solid state and in solution. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1993 , 31, 395-401	2.6	6	
7°	Physicochemical Properties of Polyaniline Base and Salt Films. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1992 , 29, 401-414	2.2	21	
69	ESCA studies of charge transfer interactions in electroactive polymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 53, 275-287		1	
68	Charge transfer interactions and redox states in poly(N-methylaniline) and its complexes. <i>Synthetic Metals</i> , 1992 , 48, 231-240	3.6	9	
67	Protonation of the amine nitrogens in emeraldine Levidence from X-ray photoelectron spectroscopy. <i>Synthetic Metals</i> , 1992 , 46, 227-233	3.6	35	
66	Surface modifications of polyaniline films by graft copolymerization. <i>Macromolecules</i> , 1992 , 25, 1959-19	9 6 55	77	
65	Surface modifications of poly(3-alkylthiophene) films by graft copolymerization. <i>Macromolecules</i> , 1992 , 25, 6842-6848	5.5	35	
64	The intrinsic redox states in polypyrrole and polyaniline: A comparative study by XPS. <i>Surface and Interface Analysis</i> , 1992 , 19, 33-37	1.5	78	
63	Chemical nature of the nitrogens in polypyrrole and nitrogen-substituted polypyrrole: a comparative study by X-ray photoelectron spectroscopy. <i>Journal of Materials Science</i> , 1992 , 27, 4056-40	60 ³	33	
62	Microbial membrane-modified dissolved oxygen probe for rapid biochemical oxygen demand measurement. <i>Sensors and Actuators B: Chemical</i> , 1992 , 8, 167-172	8.5	63	
61	X-ray photoelectron spectroscopic studies of H2SO4 protonated polyaniline. <i>Polymer</i> , 1992 , 33, 2857-28	B 5 .9)	17	

60	Spectroscopic studies of protonation, oxidation and light irradiation of polyaniline solutions. <i>Polymer</i> , 1992 , 33, 2292-2298	3.9	43
59	Charge transfer interactions in bithiophene-pyrrole and bithiophene-aniline copolymers. <i>European Polymer Journal</i> , 1992 , 28, 755-763	5.2	8
58	Thermal stability and degradation of some chemically synthesized polypyrrole complexes. <i>Thermochimica Acta</i> , 1991 , 181, 57-70	2.9	13
57	Structural changes associated with thermal and chemical treatment of polythiophenes doped with perchlorate. <i>Polymer Degradation and Stability</i> , 1991 , 31, 37-49	4.7	6
56	Photodegradation of poly(o-(trimethylsilyl)phenylacetylene) in solutions. <i>Polymer</i> , 1991 , 32, 226-230	3.9	7
55	X-ray photoelectron spectroscopy studies of deprotonated polypyrrole and its complexes. <i>Polymer</i> , 1991 , 32, 1354-1360	3.9	51
54	Thermal degradation studies of perchlorate-doped conductive polymers. <i>Journal of Applied Polymer Science</i> , 1991 , 43, 573-579	2.9	13
53	The effects of synthesis conditions on the characteristics and chemical structures of polyaniline: A comparative study. <i>Journal of Physics and Chemistry of Solids</i> , 1991 , 52, 673-680	3.9	29
52	Charge transfer interactions in some poly[[o-(trimethylsilyl)phenyl] acetylene]-acceptor complexes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1991 , 29, 669-676	2.6	4
51	A comparative study on the structural changes in leucoemeraldine and emeraldine base upon doping by perchlorate. <i>Journal of Polymer Science Part A</i> , 1991 , 29, 759-766	2.5	15
50	The chemical nature of the nitrogens in polypyrrole and polyaniline: A comparative study by x-ray photoelectron spectroscopy. <i>Journal of Chemical Physics</i> , 1991 , 94, 5382-5388	3.9	84
49	X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron(III) salts. <i>Macromolecules</i> , 1991 , 24, 2822-2828	5.5	134
48	Static SIMS of polyacetylene: the effect of chain unsaturation. Synthetic Metals, 1991, 45, 227-234	3.6	8
47	X-ray photoelectron spectroscopic studies of poly(2,2'-bithiophene) and its complexes. <i>Physical Review B</i> , 1991 , 44, 10461-10469	3.3	61
46	Structural dependence of polyanilines on reaction medium. Synthetic Metals, 1991, 40, 341-354	3.6	15
45	Structural studies of poly(p-phenyleneamine) and its oxidation. <i>Macromolecules</i> , 1990 , 23, 2918-2926	5.5	115
44	Synthesis and characterization of some polyanilineBrganic acceptor complexes. <i>Journal of Applied Polymer Science</i> , 1990 , 40, 2015-2025	2.9	46
43	Chemical copolymerization of aniline with halogen-substituted anilines. <i>European Polymer Journal</i> , 1990 , 26, 403-407	5.2	12

42	X.p.s. studies of charge transfer interactions in some polyaniline complexes. <i>Polymer</i> , 1990 , 31, 202-207	3.9	27
41	Thermal degradation of leucoemeraldine, emeraldine base and their complexes. <i>Thermochimica Acta</i> , 1990 , 171, 279-291	2.9	35
40	Pyrolysis and thermal oxidation of doped and undoped poly((o-(trimethylsilyl)phenyl(acetylene). <i>Polymer Degradation and Stability</i> , 1990 , 29, 279-290	4.7	6
39	Stability studies of polyaniline. <i>Polymer Degradation and Stability</i> , 1990 , 27, 107-117	4.7	59
38	X-ray photoelectron spectroscopic studies of conductive polypyrrole complexes chemically synthesized with FeCl3. <i>Physical Review B</i> , 1990 , 42, 7563-7566	3.3	34
37	XPS studies of charge-transfer interactions in some pyridine: organic-acceptor complexes. <i>Molecular Physics</i> , 1990 , 70, 1057-1064	1.7	8
36	Structural Studies of Aniline: Substituted Aniline Copolymers By Xps. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1990 , 27, 933-946		4
35	Structural studies of halogen-substituted polyanilines by X-ray photoelectron spectroscopy. <i>Synthetic Metals</i> , 1990 , 35, 345-355	3.6	17
34	XPS studies of proton modification and some anion exchange processes in polypyrrole. <i>Synthetic Metals</i> , 1990 , 39, 69-80	3.6	50
33	Effects of Protonic Acids on Polyaniline Structure and Characteristics. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1990 , 27, 347-360		7
	X-ray photoelectron spectroscopy studies of the chemical structure of polyaniline. <i>Physical Review</i>		
32	B, 1989 , 39, 8070-8073	3.3	211
31		2.9	211
	B, 1989, 39, 8070-8073 Effects of acceptor level on chemically synthesized polypyrrole-halogen complexes. Journal of		14
31	B, 1989, 39, 8070-8073 Effects of acceptor level on chemically synthesized polypyrrole-halogen complexes. Journal of Applied Polymer Science, 1989, 37, 2169-2180 Halogen-induced chemical copolymerization of pyrrole with N-methylpyrrole. Journal of Applied	2.9	14
31	Effects of acceptor level on chemically synthesized polypyrrole-halogen complexes. Journal of Applied Polymer Science, 1989, 37, 2169-2180 Halogen-induced chemical copolymerization of pyrrole with N-methylpyrrole. Journal of Applied Polymer Science, 1989, 38, 2009-2017	2.9	14
31 30 29	Effects of acceptor level on chemically synthesized polypyrrole-halogen complexes. Journal of Applied Polymer Science, 1989, 37, 2169-2180 Halogen-induced chemical copolymerization of pyrrole with N-methylpyrrole. Journal of Applied Polymer Science, 1989, 38, 2009-2017 Rapid mixing studies in an entrained flow process. The Chemical Engineering Journal, 1989, 40, 121-137 Effects of temperature and oxygen on the degradation of doped and undoped	2.9	14
31 30 29 28	Effects of acceptor level on chemically synthesized polypyrrole-halogen complexes. <i>Journal of Applied Polymer Science</i> , 1989 , 37, 2169-2180 Halogen-induced chemical copolymerization of pyrrole with N-methylpyrrole. <i>Journal of Applied Polymer Science</i> , 1989 , 38, 2009-2017 Rapid mixing studies in an entrained flow process. <i>The Chemical Engineering Journal</i> , 1989 , 40, 121-137 Effects of temperature and oxygen on the degradation of doped and undoped polyphenylacetylene. <i>Thermochimica Acta</i> , 1989 , 146, 251-262 Stability and degradation of trans-polyphenylacetylene in organic solvents and under light	2.9	14 10 5

24	XPS studies of iodine complexes of pyrrole IN-methylpyrrole copolymer. <i>Polymer Bulletin</i> , 1989 , 21, 53-57	2.4	17
23	XPS studies of charge transfer interactions in some polyphenylacetylene-electron acceptor systems. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1989 , 27, 2061-2069	2.6	9
22	Synthesis and characterization of electrically conducting polyanilineIICNE complexes. <i>Journal of Polymer Science Part A</i> , 1989 , 27, 4365-4374	2.5	4
21	XPS studies of copolymers of pyrrole and N-methylpyrrole. <i>Synthetic Metals</i> , 1989 , 30, 189-197	3.6	13
20	XPS studies of some chemically-synthesized polypyridazine-acceptor complexes. <i>Synthetic Metals</i> , 1989 , 31, 79-94	3.6	3
19	Advanced two-stage gasification system. 1. Experimental results. <i>Industrial & Engineering Chemistry Research</i> , 1989 , 28, 1600-1607	3.9	6
18	Structural determination of polyaniline by X-ray photoelectron spectroscopy. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 695		50
17	Study of charge-transfer interactions in polyvinylpyridine-halobenzoquinone complexes by x-ray photoelectron spectroscopy. <i>Journal of Applied Physics</i> , 1989 , 66, 5868-5871	2.5	5
16	ESCA Studies of Protonation in Polyaniline. <i>Polymer Journal</i> , 1989 , 21, 873-881	2.7	34
15	Electrochemical characterization of chemically synthesized polypyrrole-halogen complexes. <i>European Polymer Journal</i> , 1988 , 24, 371-377	5.2	1
14	Chemical synthesis and characterization of polypyrrole-chlorine complex. <i>Polymer</i> , 1988 , 29, 553-558	3.9	38
13	Chemical synthesis and characterization of electroactive and partially soluble polyazulene. <i>Polymer Bulletin</i> , 1988 , 19, 325	2.4	19
12	Pressure effects on steam pyrolysis of coal. Fuel Processing Technology, 1988, 18, 133-146	7.2	3
11	Electrical and thermal stability of chemically synthesized conductive polypyrrole-halogen complexes. <i>Polymer Degradation and Stability</i> , 1988 , 21, 93-103	4.7	11
10	XPS Studies of Some Chemically Synthesized PolypyrroleDrganic Acceptor Complexes. <i>Polymer Journal</i> , 1988 , 20, 845-850	2.7	34
9	ESCA Analysis of PolymerAcceptor Interactions in Chemically Synthesized PolypyrroleHalogen Complexes. <i>Polymer Journal</i> , 1988 , 20, 399-406	2.7	38
8	The Polymerization and Oxidation of Pyrrole by Halogens in Organic Solvents. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1987 , 24, 631-644		27
7	Polymerization and oxidation of pyrrole by organic electron acceptors. <i>Journal of Polymer Science Part A</i> , 1987 , 25, 2143-2153	2.5	26

LIST OF PUBLICATIONS

6	Halogen induced polymerization of furan. <i>European Polymer Journal</i> , 1987 , 23, 719-722	5.2	14
5	Coal characteristics important to pulverized coal processes. <i>Fuel Processing Technology</i> , 1987 , 15, 189-1	9 9 .2	1
4	Electrical properties of chemically synthesized polypyrrole-halogen charge transfer complexes. <i>Solid State Communications</i> , 1986 , 60, 457-459	1.6	22
3	Halogen-induced charge transfer polymerization of pyrrole in aqueous media. <i>Polymer</i> , 1986 , 27, 1958-	1 <u>9.6</u> 2	38
2	Effect of oxidation on the physical structure of soot. <i>Proceedings of the Combustion Institute</i> , 1985 , 20, 951-957		127
1	Coal volatile yield and element partition in rapid pyrolysis. <i>Fuel</i> , 1984 , 63, 1347-1352	7.1	25