Nicolas Large

List of Publications by Citations

Source: https://exaly.com/author-pdf/3688267/nicolas-large-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37
papers

3,224
citations

42
papers

3,678
ext. papers

3,678
ext. citations

8
solutions

5.1
L-index

#	Paper	IF	Citations
37	Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. <i>Nano Letters</i> , 2013 , 13, 240	-7 1.5	1091
36	Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. <i>Journal of the American Chemical Society</i> , 2014 , 136, 64-7	16.4	375
35	Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. <i>Nano Letters</i> , 2013 , 13, 3281-6	11.5	365
34	Three-dimensional plasmonic nanoclusters. <i>Nano Letters</i> , 2013 , 13, 4399-403	11.5	148
33	Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 370-4	6.4	146
32	Tunable plasmonic nanoparticles with catalytically active high-index facets. <i>Nano Letters</i> , 2014 , 14, 3674	4 -18 125	131
31	Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. <i>Nano Letters</i> , 2010 , 10, 1741-6	11.5	128
30	Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. <i>ACS Applied Materials & District Materials &</i>	9.5	107
29	High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. <i>Nano Letters</i> , 2016 , 16, 4251-9	11.5	105
28	Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles. <i>Small</i> , 2016 , 12, 330-42	11	59
27	Epitaxial Growth of Cu2O on Ag Allows for Fine Control Over Particle Geometries and Optical Properties of Agtu2O CoreBhell Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 19948-19963	3.8	57
26	Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package. <i>ACS Photonics</i> , 2015 , 2, 369-375	6.3	54
25	Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution. <i>ACS Nano</i> , 2016 , 10, 5362-73	16.7	49
24	High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. <i>ACS Nano</i> , 2015 , 9, 9331-9	16.7	46
23	Gold nanoring trimers: a versatile structure for infrared sensing. <i>Optics Express</i> , 2010 , 18, 22271-82	3.3	36
22	Unraveling near-field and far-field relationships for 3D SERS substratesa combined experimental and theoretical analysis. <i>Analyst, The</i> , 2016 , 141, 1779-88	5	35
21	Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter. <i>Optics Express</i> , 2011 , 19, 5587-95	3.3	32

(2021-2009)

20	Acousto-plasmonic hot spots in metallic nano-objects. <i>Nano Letters</i> , 2009 , 9, 3732-8	11.5	32
19	Direct Experimental Evidence of Hot Carrier-Driven Chemical Processes in Tip-Enhanced Raman Spectroscopy (TERS). <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2238-2244	3.8	29
18	Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars. <i>Nanotechnology</i> , 2013 , 24, 405704	3.4	26
17	Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. <i>Nano Letters</i> , 2013 , 13, 5997-6001	11.5	26
16	Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Arrays. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17172-17182	3.8	21
15	Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. <i>ACS Nano</i> , 2019 , 13, 10113-10128	16.7	20
14	Standing wave plasmon modes interact in an antenna-coupled nanowire. <i>Nano Letters</i> , 2015 , 15, 1324-3	3011.5	18
13	Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. <i>Nano Letters</i> , 2016 , 16, 6939-6945	11.5	18
12	Unraveling the Near- and Far-Field Relationship of 2D Surface-Enhanced Raman Spectroscopy Substrates Using Wavelength-Scan Surface-Enhanced Raman Excitation Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14737-14744	3.8	14
11	Efficient Excitation of Higher Order Modes in the Plasmonic Response of Individual Concave Gold Nanocubes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 731-740	3.8	13
10	Raman-Brillouin light scattering in low-dimensional systems: Photoelastic model versus quantum model. <i>Physical Review B</i> , 2007 , 75,	3.3	9
9	Underlying Mechanisms of Hot Carrier-Driven Reactivity on Bimetallic Nanostructures. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2492-2501	3.8	9
8	Surface enhanced resonant Raman scattering in hybrid MoSe@Au nanostructures. <i>Optics Express</i> , 2018 , 26, 29411-29423	3.3	8
7	Wavelength and Polarization Dependence of Second-Harmonic Responses from Gold Nanocrescent Arrays. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20424-20435	3.8	7
6	Plasmonic-Induced Luminescence of MoSe2 Monolayers in a Scanning Tunneling Microscope. <i>ACS Photonics</i> , 2020 , 7, 3061-3070	6.3	4
5	Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures. <i>Nano Research</i> ,1	10	3
4	Raman-Brillouin electronic density in short-period superlattices. <i>Physical Review B</i> , 2010 , 82,	3.3	1
3	Magneto-plasmonic biocompatible nanorice. <i>Journal of Nanoparticle Research</i> , 2021 , 23, 1	2.3	1

Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic 2 13 1 behavior for in-situ tumor imaging and photothermal therapy. Journal of Advanced Research, 2022,

Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. Nanotechnology, **2019**, 30, 165101

3.4