Renaud Legouis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3688128/publications.pdf

Version: 2024-02-01

56 papers 11,309 citations

30 h-index 55 g-index

61 all docs

61 docs citations

61 times ranked

22605 citing authors

#	Article	IF	CITATIONS
1	The strange case of Drp1 in autophagy: Jekyll and Hyde?. BioEssays, 2022, 44, e2100271.	2.5	6
2	Exploring selective autophagy events in multiple biologic models using LC3-interacting regions (LIR)-based molecular traps. Scientific Reports, 2022, 12, 7652.	3.3	5
3	L'autophagie facilite laÂreconstruction du réseau mitochondrial après un stress thermique chez le nématode <i>C.Âelegans</i> . Medecine/Sciences, 2022, 38, 517-519.	0.2	O
4	Autophagy facilitates mitochondrial rebuilding after acute heat stress via a DRP-1–dependent process. Journal of Cell Biology, 2021, 220, .	5. 2	21
5	A DRP-1 dependent autophagy process facilitates rebuilding of the mitochondrial network and modulates adaptation capacity in response to acute heat stress during C. elegans development. Autophagy, 2021, 17, 2654-2655.	9.1	3
6	Mitophagy during development and stress in C. elegans. Mechanisms of Ageing and Development, 2020, 189, 111266.	4.6	13
7	High-speed polarization-resolved third-harmonic microscopy. Optica, 2019, 6, 385.	9.3	24
8	Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy, 2019, 15, 228-241.	9.1	16
9	Correlative Light and Electron Microscopy to Analyze LC3 Proteins in Caenorhabditis elegans Embryo. Methods in Molecular Biology, 2019, 1880, 281-293.	0.9	3
10	Subcellular Localization of ESCRT-II in the Nematode C. elegans by Correlative Light Electron Microscopy. Methods in Molecular Biology, 2019, 1998, 49-61.	0.9	0
11	Fast P-THG microscopy for the characterization of biomaterials. , 2019, , .		O
12	ESCRT and autophagies: Endosomal functions and beyond. Seminars in Cell and Developmental Biology, 2018, 74, 21-28.	5.0	82
13	An Efficient Multicolor Two-Photon Imaging of Endogenous Fluorophores in Living Tissues by Wavelength Mixing. Biophysical Journal, 2017, 112, 186a.	0.5	2
14	Multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing. Scientific Reports, 2017, 7, 3792.	3.3	99
15	Approaches for Studying Autophagy in Caenorhabditis elegans. Cells, 2017, 6, 27.	4.1	33
16	SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the <i>C. elegans</i> Autophagic Protein LGG-1. Journal of Proteome Research, 2016, 15, 1515-1523.	3.7	1
17	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
18	The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum. Journal of Cell Science, 2016, 129, 1490-9.	2.0	12

#	Article	IF	Citations
19	Tools and methods to analyze autophagy in C. elegans. Methods, 2015, 75, 162-171.	3.8	12
20	Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy, 2015, 11, 9-27.	9.1	119
21	Human GABARAP can restore autophagosome biogenesis in a <i>C. elegans lgg-1</i> mutant. Autophagy, 2014, 10, 1868-1872.	9.1	15
22	Interactions Between Endosomal Maturation and Autophagy. Methods in Enzymology, 2014, 534, 93-118.	1.0	5
23	The C.Âelegans LC3 Acts Downstream of GABARAP to Degrade Autophagosomes by Interacting with the HOPS Subunit VPS39. Developmental Cell, 2014, 28, 43-55.	7.0	126
24	Autophagy in endosomal mutants. Worm, 2012, 1, 216-220.	1.0	9
25	Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in <i>C. elegans</i> Journal of Cell Science, 2012, 125, 685-694.	2.0	50
26	Need an ESCRT for autophagosomal maturation?. Communicative and Integrative Biology, 2012, 5, 566-571.	1.4	20
27	Allophagy. Autophagy, 2012, 8, 421-423.	9.1	53
28	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
29	Caenorhabditis elegans Evolves a New Architecture for the Multi-aminoacyl-tRNA Synthetase Complex. Journal of Biological Chemistry, 2011, 286, 28476-28487.	3.4	26
30	Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos. Biomedical Optics Express, 2011, 2, 2837.	2.9	44
31	Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission. Science, 2011, 334, 1144-1147.	12.6	426
32	Methionylâ€ŧRNA synthetase from <i>Caenorhabditis elegans</i> : A specific multidomain organization for convergent functional evolution. Protein Science, 2010, 19, 2475-2484.	7.6	18
33	The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in <i>C. elegans</i> . Autophagy, 2010, 6, 622-633.	9.1	82
34	Developmental and cellular functions of the ESCRT machinery in pluricellular organisms. Biology of the Cell, 2010, 102, 191-202.	2.0	43
35	The ESCRTâ€III protein CeVPSâ€32 is enriched in domains distinct from CeVPSâ€27 and CeVPSâ€23 at the endosomal membrane of epithelial cells. Biology of the Cell, 2009, 101, 599-615.	2.0	30
36	Glutathione transferases kappaâ \in f1 and kappaâ \in f2 localize in peroxisomes and mitochondria, respectively, and are involved in lipid metabolism and respiration in <i>Caenorhabditisâ\in felegans</i> . FEBS Journal, 2009, 276, 5030-5040.	4.7	37

#	Article	IF	Citations
37	Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Developmental Biology, 2009, 327, 34-47.	2.0	38
38	CeVPS-27 is an Endosomal Protein Required for the Molting and the Endocytic Trafficking of the Low-Density Lipoprotein Receptor-Related Protein 1 in Caenorhabditis elegans. Traffic, 2005, 6, 695-705.	2.7	78
39	PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development (Cambridge), 2004, 131, 2865-2874.	2.5	47
40	Basolateral targeting by leucineâ€rich repeat domains in epithelial cells. EMBO Reports, 2003, 4, 1096-1100.	4.5	121
41	The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. Journal of Cell Biology, 2003, 161, 757-768.	5.2	135
42	Basolateral targeting by leucine-rich repeat domains in epithelial cells. EMBO Reports, 2003, 4, 1096-1100.	4.5	48
43	Epithelial biology: lessons from Caenorhabditis elegans. Gene, 2001, 277, 83-100.	2.2	37
44	Assembly of <i>C. elegans </i> apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. Journal of Cell Science, 2001, 114, 2265-2277.	2.0	154
45	LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nature Cell Biology, 2000, 2, 415-422.	10.3	175
46	Collective nomenclature for LAP proteins. Nature Cell Biology, 2000, 2, E114-E114.	10.3	64
47	Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome. Mechanisms of Development, 2000, 90, 89-94.	1.7	43
48	Early expression of the KAL gene during embryonic development of the chick. Anatomy and Embryology, 1994, 190, 549-62.	1.5	13
49	Isolation and characterization of the gene responsible for the X chromosome-linked Kallmann syndrome. Biomedicine and Pharmacotherapy, 1994, 48, 241-246.	5.6	19
50	Characterization and Chromosomal Assignment of a Human cDNA Encoding a Protein Related to the Murine 102-kDa Cadherin-Associated Protein (î±-Catenin). Genomics, 1993, 15, 13-20.	2.9	28
51	Characterization of the Chicken and Quail Homologues of the Human Gene Responsible for the X-Linked Kallmann Syndrome. Genomics, 1993, 17, 516-518.	2.9	42
52	Expression of the KAL gene in multiple neuronal sites during chicken development Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2461-2465.	7.1	66
53	Xp22.3 deletions in isolated familial Kallmann's syndrome. Journal of Clinical Endocrinology and Metabolism, 1993, 76, 827-831.	3.6	63
54	X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8190-8194.	7.1	182

#	Article	IF	CITATIONS
55	The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell, 1991, 67, 423-435.	28.9	668
56	A dinucleotide repeat polymorphism at the Kallmann locus (Xp22.3). Nucleic Acids Research, 1991, 19, 5453-5453.	14.5	26