Wolfgang Eichhammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3688120/publications.pdf

Version: 2024-02-01

51 papers 2,035 citations

279701 23 h-index 243529 44 g-index

54 all docs

54 docs citations

54 times ranked 1854 citing authors

#	Article	IF	CITATIONS
1	Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?. Energy Policy, 2021, 152, 112216.	4.2	54
2	Linking energy efficiency indicators with policy evaluation – A combined top-down and bottom-up analysis of space heating consumption in residential buildings. Energy and Buildings, 2021, 244, 110987.	3.1	12
3	Customer economics of residential PV–battery systems in Thailand. Renewable Energy, 2020, 146, 297-308.	4.3	48
4	Energy efficiency and demand response – two sides of the same coin?. Energy Policy, 2020, 137, 111070.	4.2	40
5	The evolution of energy efficiency in Switzerland in the period 2000–2016. Energy, 2020, 191, 116526.	4.5	22
6	A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030. Renewable and Sustainable Energy Reviews, 2020, 120, 109672.	8.2	82
7	Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms' coordination among abatement options. European Journal of Operational Research, 2020, 286, 1113-1128.	3.5	36
8	A comprehensive indicator set for measuring multiple benefits of energy efficiency. Energy Policy, 2020, 139, 111284.	4.2	44
9	The flexibility deployment of the service sector - A demand response modelling approach coupled with evidence from a market research survey. Energy Strategy Reviews, 2020, 28, 100460.	3.3	8
10	Applying ex post index decomposition analysis to final energy consumption for evaluating European energy efficiency policies and targets. Energy Efficiency, 2019, 12, 1329-1357.	1.3	44
11	Low-carbon energy scenarios 2050 in north-west European countries: Towards a more harmonised approach to achieve the EU targets. Energy Policy, 2019, 130, 448-460.	4.2	29
12	The Spatial Deployment of Renewable Energy Based on China's Coal-heavy Generation Mix and Inter-regional Transmission Grid. Energy Journal, 2019, 40, 45-74.	0.9	18
13	Tailoring cross-sectional energy-efficiency measures to target groups in industry. Energy Efficiency, 2018, 11, 1265-1279.	1.3	7
14	Analysis of Carbon Leakage under Phase III of the EU Emissions Trading System: Trading Patterns in the Cement and Aluminium Sectors. Energies, 2018, 11, 1231.	1.6	11
15	Impacts of the Allocation Mechanism Under the Third Phase of the European Emission Trading Scheme. Energies, 2018, 11, 1443.	1.6	1
16	Pathways to a low-carbon iron and steel industry in the medium-term – the case of Germany. Journal of Cleaner Production, 2017, 163, 84-98.	4.6	106
17	Renewable energy policy dialogue towards 2030 – Editorial of the special issue. Energy and Environment, 2017, 28, 5-10.	2.7	1
18	Applying ex-post index decomposition analysis to primary energy consumption for evaluating progress towards European energy efficiency targets. Energy Efficiency, 2017, 10, 1381-1400.	1.3	31

#	Article	IF	Citations
19	Drivers and barriers to the diffusion of energy-efficient technologiesâ€"a plant-level analysis of the German steel industry. Energy Efficiency, 2017, 10, 441-457.	1.3	25
20	Learning networks as an enabler for informed decisions to target energy-efficiency potentials in companies. Journal of Cleaner Production, 2017, 163, 118-127.	4.6	21
21	The environmental impact of eco-innovations: the case of EU residential electricity use. Environmental Economics and Policy Studies, 2016, 18, 213-228.	0.8	59
22	Policy dialogue on the assessment and convergence of renewable energy policy in EU member states. Energy and Environment, 2016, 27, 5-9.	2.7	1
23	Energy saving potential of information and communication technology. International Journal of Decision Support Systems, 2015, 1, 152.	0.1	5
24	Interaction between Climate, Emissions Trading and Energy Efficiency Targets. Energy and Environment, 2014, 25, 709-731.	2.7	10
25	An exploration of possible design options for a binding energy savings target in Europe. Energy Efficiency, 2014, 7, 97-113.	1.3	12
26	CO2 emissions reduction potential in China's cement industry compared to IEA's Cement Technology Roadmap up to 2050. Applied Energy, 2014, 130, 592-602.	5.1	120
27	Introduction to the Special Issue — Theoretical Advances in and Empirical Lessons on Emission Trading Schemes. Energy and Environment, 2014, 25, 519-525.	2.7	2
28	Financing Instruments to Promote Energy Efficiency and Renewables in Times of Tight Public Budgets. Energy and Environment, 2013, 24, 1-26.	2.7	9
29	Which Role for Market-Oriented Instruments for Achieving Energy Efficiency Targets in Germany?. Energy and Environment, 2013, 24, 27-55.	2.7	5
30	Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 2012, 50, 821-832.	4.2	215
31	The German energy audit program for firmsâ€"a cost-effective way to improve energy efficiency?. Energy Efficiency, 2012, 5, 447-469.	1.3	54
32	Benchmarking green innovation. Mineral Economics, 2012, 24, 79-101.	1.3	14
33	Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials. Energy, 2012, 40, 84-99.	4.5	183
34	Imbalance in Europe's Effort Sharing Decision: Scope for strengthening incentives for energy savings in the non-ETS sectors. Energy Policy, 2011, 39, 6636-6649.	4.2	9
35	Fruitful symbiosis: Why an export bundled with wind energy is the most feasible option for North African concentrated solar power. Energy Policy, 2011, 39, 7136-7145.	4.2	24
36	The unrecognized contribution of renewable energy to Europe's energy savings target. Energy Policy, 2011, 39, 3425-3433.	4.2	39

#	Article	IF	CITATIONS
37	Barriers to energy efficiency in industrial bottom-up energy demand modelsâ€"A review. Renewable and Sustainable Energy Reviews, 2011, 15, 3099-3111.	8.2	166
38	Effects of economies of scale and experience on the costs of energy-efficient technologies – case study of electric motors in Germany. Energy Efficiency, 2010, 3, 331-346.	1.3	15
39	How to promote renewable energy systems successfully and effectively. Energy Policy, 2004, 32, 833-839.	4.2	177
40	Designing National Allocation Plans for Eu-Emissions Trading $\hat{a}\in$ " A First Analysis of the Outcomes. Energy and Environment, 2004, 15, 375-425.	2.7	59
41	Greenhouse gas reductions in Germany — lucky strike or hard work?. Climate Policy, 2001, 1, 363-380.	2.6	5
42	Greenhouse gas reductions in Germanyâ€"lucky strike or hard work?. Climate Policy, 2001, 1, 363-380.	2.6	27
43	Industrial energy efficiency. Energy Policy, 1997, 25, 759-772.	4.2	57
44	Effects of conventional and rapid thermal annealing on minority carrier diffusion length in float zone and Czochralski silicon crystals. Journal of Alloys and Compounds, 1992, 188, 221-224.	2.8	1
45	Boron outdiffusion from poly- and monocrystalline CoSi2. Applied Surface Science, 1991, 53, 171-179.	3.1	8
46	Rapid thermal process-induced recombination centers in ion implanted silicon. Applied Physics A: Solids and Surfaces, 1990, 50, 405-410.	1.4	14
47	Inhomogeneous defect activation by rapid thermal processes in silicon. Applied Physics Letters, 1989, 54, 1235-1237.	1.5	15
48	Gettering of gold by rapid thermal processing. Applied Physics Letters, 1989, 55, 873-875.	1.5	19
49	Activation and gettering of intrinsic metallic impurities during rapid thermal processing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1989, 4, 129-132.	1.7	6
50	On the origin of rapid thermal process induced recombination centers in silicon. Journal of Applied Physics, 1989, 66, 3857-3865.	1.1	28
51	Electron diffusion length in rapid thermal processedpâ€ŧype silicon. Applied Physics Letters, 1988, 53, 1928-1930.	1.5	20