
Mustafa Bener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3688071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry, 2021, 353, 129337.	8.2	84
2	Development of a Low-Cost Optical Sensor for Cupric Reducing Antioxidant Capacity Measurement of Food Extracts. Analytical Chemistry, 2010, 82, 4252-4258.	6.5	63
3	Antioxidant/antiradical properties of microwave-assisted extracts of three wild edible mushrooms. Food Chemistry, 2014, 157, 323-331.	8.2	57
4	Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 2022, 385, 132633.	8.2	52
5	Rapid adsorptive removal of naphthalene from water using graphene nanoplatelet/MIL-101 (Cr) nanocomposite. Journal of Alloys and Compounds, 2017, 701, 740-749.	5.5	49
6	Cupric Ion Reducing Antioxidant Capacity Assay for Food Antioxidants: Vitamins, Polyphenolics, and Flavonoids in Food Extracts. Methods in Molecular Biology, 2008, 477, 163-193.	0.9	47
7	Release and Degradation of Anthocyanins and Phenolics from Blueberry Pomace during Thermal Acid Hydrolysis and Dry Heating. Journal of Agricultural and Food Chemistry, 2013, 61, 6643-6649.	5.2	41
8	Cupric Ion Reducing Antioxidant Capacity Assay for Antioxidants in Human Serum and for Hydroxyl Radical Scavengers. Methods in Molecular Biology, 2010, 594, 215-239.	0.9	35
9	Novel oxime based flavanone, naringin-oxime: Synthesis, characterization and screening for antioxidant activity. Chemico-Biological Interactions, 2014, 212, 40-46.	4.0	34
10	Heparin-stabilized gold nanoparticles-based CUPRAC colorimetric sensor for antioxidant capacity measurement. Talanta, 2018, 187, 148-155.	5.5	31
11	Synthesis, characterization and antioxidant capacity of naringenin-oxime. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 85, 235-240.	3.9	25
12	Novel Optical Fiber Reflectometric CUPRAC Sensor for Total Antioxidant Capacity Measurement of Food Extracts and Biological Samples. Journal of Agricultural and Food Chemistry, 2013, 61, 8381-8388.	5.2	23
13	Polyphenolic contents of natural dyes produced from industrial plants assayed by HPLC and novel spectrophotometric methods. Industrial Crops and Products, 2010, 32, 499-506.	5.2	22
14	Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants. Sensors, 2018, 18, 186.	3.8	22
15	Iron(III) and nickel(II) complexes with S-alkyl (n-C1-6)- thiosemicarbazidato ligands: Synthesis, structural characterization, and antioxidant features. Journal of Molecular Structure, 2018, 1167, 16-22.	3.6	21
16	Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120884.	3.9	21
17	Ferric-o-phenanthroline adsorbed on a Nafion membrane: A novel optical sensor for antioxidant capacity measurement of food extracts. Sensors and Actuators B: Chemical, 2017, 247, 155-162.	7.8	17
18	Carrageenan-based colorimetric sensor for total antioxidant capacity measurement. Sensors and Actuators B: Chemical, 2018, 273, 439-447.	7.8	17

MUSTAFA BENER

#	Article	IF	CITATIONS
19	Protein-Protected Gold Nanocluster-Based Biosensor for Determining the Prooxidant Activity of Natural Antioxidant Compounds. ACS Omega, 2019, 4, 2455-2462.	3.5	17
20	A novel gold nanocluster–based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift. Talanta, 2020, 208, 120425.	5.5	17
21	Novel pararosaniline based optical sensor for the determination of sulfite in food extracts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 226, 117643.	3.9	17
22	Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. Analytical Methods, 2020, 12, 5266-5321.	2.7	16
23	ABTS radical-based single reagent assay for simultaneous determination of biologically important thiols and disulfides. Talanta, 2020, 218, 121212.	5.5	11
24	Redox-based colorimetric sensing of H2O2 after removal of antioxidants with ABTS radical oxidation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119266.	3.9	11
25	The CUPRAC Methods of Antioxidant Measurement for Beverages. , 2014, , 235-244.		8
26	Optimization of Microwave-Assisted Extraction (MAE) for the Isolation of Antioxidants from Basil (<i>Ocimum basilicum</i> L.) by Response Surface Methodology (RSM). Analytical Letters, 2019, 52, 2751-2763.	1.8	8
27	Development of a green synthesized silver nanoparticle-based antioxidant capacity method using carob extract. Journal of Nanostructure in Chemistry, 2021, 11, 381-394.	9.1	8
28	Protamine gold nanoclustersÂâ~Âbased fluorescence turn-on sensor for rapid determination of Trinitrotoluene (TNT). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121462.	3.9	7
29	Modeling and optimizing microwave-assisted extraction of antioxidants from Thymbra Spicata L. and characterization of their phenolic constituents. Food Science and Biotechnology, 2019, 28, 1733-1745.	2.6	6
30	Iron(III) complexes based on tetradentate thiosemicarbazones: Synthesis, characterization, radical scavenging activity and <i>in vitro</i> cytotoxicity on K562, P3HR1 and JURKAT cells. Applied Organometallic Chemistry, 2021, 35, e6157.	3.5	6
31	A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism. Journal of Fluorescence, 2021, 31, 989-997.	2.5	5
32	Antioxidant capacity measurement based on κ-carrageenan stabilized and capped silver nanoparticles using green nanotechnology. Journal of Molecular Structure, 2021, 1242, 130846.	3.6	5
33	Novel optical sensor-based method for determining total tocopherol content in serum. Turkish Journal of Chemistry, 2018, 42, 1687-1694.	1.2	1
34	A simple automated microplate method for determining reducing sugars in food extracts and synthetic serum using cupric-neocuproine as reductant. Turkish Journal of Chemistry, 2018, 42, .	1.2	1