Maurizio Galimberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/368780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in propylene polymerization with MgCl ₂ supported catalysts. Macromolecular Symposia, 1995, 89, 73-89.	0.4	89
2	MAS NMR characterization of syndiotactic polypropylene: crystal structure and amorphous phase conformation. Macromolecules, 1993, 26, 5782-5789.	2.2	87
3	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 523-528.	1.1	76
4	Chemically Reduced Graphite Oxide with Improved Shape Anisotropy. Journal of Physical Chemistry C, 2012, 116, 24809-24813.	1.5	71
5	Thermal behaviour of highly stereoregular syndiotactic polypropene from homogeneous catalysts. Die Makromolekulare Chemie, 1992, 193, 693-703.	1.1	62
6	Ethene/Propene Copolymerization with High Product of Reactivity Ratios from a Single Center, Metallocene-Based Catalytic System. Macromolecules, 1998, 31, 3409-3416.	2.2	61
7	Clay Delamination in Hydrocarbon Rubbers. Chemistry of Materials, 2007, 19, 2495-2499.	3.2	56
8	Enantioselective hydro-oligomerization (protio- or deuterio-) of α-olefins. Die Makromolekulare Chemie, 1990, 191, 1677-1688.	1.1	55
9	Equilibrium Melting Temperature of Syndiotactic Polypropylene. Macromolecules, 1998, 31, 6206-6210.	2.2	53
10	FILLER NETWORKING OF A NANOGRAPHITE WITH A HIGH SHAPE ANISOTROPY AND SYNERGISM WITH CARBON BLACK IN POLY(1,4-CIS-ISOPRENE)–BASED NANOCOMPOSITES. Rubber Chemistry and Technology, 2014, 87, 197-218.	0.6	53
11	Thiolâ€Ene Radical Addition of <scp>L</scp> â€Cysteine Derivatives to Low Molecular Weight Polybutadiene. Macromolecular Chemistry and Physics, 2009, 210, 1471-1483.	1.1	49
12	Asymmetric deuteration and deuteriooligomerization of 1-pentene. Journal of Organometallic Chemistry, 1989, 370, 1-7.	0.8	47
13	13C NMR Studies of Ethylene-Propylene Copolymers Prepared with Homogeneous Metallocene-Based Ziegler-Natta Catalysts. Macromolecules, 1995, 28, 3342-3350.	2.2	46
14	Structural Characterization of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 1998, 31, 9109-9115.	2.2	44
15	On the development of a facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nano-graphite systems. Green Chemistry, 2015, 17, 4082-4088.	4.6	44
16	Ethene/Propene Copolymerization from Metallocene-Based Catalytic Systems:  Role of the Alumoxane. Macromolecules, 1999, 32, 258-263.	2.2	43
17	A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite. European Polymer Journal, 2015, 70, 28-36.	2.6	43
18	The chemistry of magnesium chloride supported catalysts for polypropylene. Makromolekulare Chemie Macromolecular Symposia, 1991, 48-49, 223-238.	0.6	41

MAURIZIO GALIMBERTI

#	Article	IF	CITATIONS
19	Graphite oxide intercalation compounds with rotator hexagonal order in the intercalated layers. Carbon, 2013, 61, 395-403.	5.4	41
20	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 305-310.	1.1	40
21	Metallocenes for Ethene/Propene Copolymerizations with High Product of Reactivity Ratios. Macromolecules, 1999, 32, 7968-7976.	2.2	39
22	The Role of CNTs in Promoting Hybrid Filler Networking and Synergism with Carbon Black in the Mechanical Behavior of Filled Polyisoprene. Macromolecular Materials and Engineering, 2013, 298, 241-251.	1.7	39
23	RECENT ADVANCEMENTS IN RUBBER NANOCOMPOSITES. Rubber Chemistry and Technology, 2014, 87, 417-442.	0.6	39
24	Random ethene/propene copolymerization from a catalyst system based on a "constrained geometry― half-sandwich complex. Macromolecular Rapid Communications, 1999, 20, 214-218.	2.0	38
25	Polymorphism of syndiotactic polypropylene in copolymers of propylene with ethylene and 1-butene. Polymer, 1998, 39, 6219-6226.	1.8	37
26	Catalysts for olefins polymerization. Catalysis Today, 1998, 41, 159-168.	2.2	33
27	Formation of clay intercalates with organic bilayers in hydrocarbon polymers. Polymers for Advanced Technologies, 2009, 20, 135-142.	1.6	31
28	The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Applied Clay Science, 2012, 61, 14-21.	2.6	30
29	Rubber Clay Nanocomposites. , 2012, , .		30
30	Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites. EXPRESS Polymer Letters, 2014, 8, 436-449.	1.1	30
31	Crystallinity and crystalline phase orientation of poly(1,4- <i>cis</i> -isoprene) from <i>Hevea brasiliensis</i> and <i>Taraxacum kok-saghyz</i> . Polymers for Advanced Technologies, 2016, 27, 1082-1090.	1.6	30
32	FACILE FUNCTIONALIZATION OF sp2 CARBON ALLOTROPES WITH A BIOBASED JANUS MOLECULE. Rubber Chemistry and Technology, 2017, 90, 285-307.	0.6	30
33	Enhancement of mechanical reinforcement due to hybrid filler networking promoted by an organoclay in hydrocarbon-based nanocomposites. Applied Clay Science, 2012, 65-66, 57-66.	2.6	28
34	Biobased Janus molecule for the facile preparation of water solutions of few layer graphene sheets. RSC Advances, 2015, 5, 81142-81152.	1.7	27
35	Functionalization of Single and Multi-Walled Carbon Nanotubes with Polypropylene Glycol Decorated Pyrrole for the Development of Doxorubicin Nano-Conveyors for Cancer Drug Delivery. Nanomaterials, 2020, 10, 1073.	1.9	26
36	Penultimate-Unit Effect in Ethene/4-Methyl-1-pentene Copolymerization for a "Sequential―Distribution of Comonomers. Macromolecules, 2008, 41, 1104-1111.	2.2	24

#	Article	IF	CITATIONS
37	NMR investigations of the reactivity between zirconocenes and β-alkyl-substituted aluminoxanes. Journal of Molecular Catalysis A, 2000, 160, 107-114.	4.8	23
38	Influence of Regio- and Stereoregularity of Propene Insertion on Crystallization Behavior and Elasticity of Etheneâ^'Propene Copolymers. Journal of the American Chemical Society, 2002, 124, 1566-1567.	6.6	23
39	Structural Characterization of Pristine and Modified Fluoromica Using Multinuclear Solid-State NMR. Journal of Physical Chemistry C, 2011, 115, 12517-12529.	1.5	23
40	Delaminated and intercalated organically modified montmorillonite in poly(1,4-cis-isoprene) matrix. Indications of counterintuitive dynamic-mechanical behavior. Applied Clay Science, 2014, 97-98, 8-16.	2.6	23
41	Domino Reaction for the Sustainable Functionalization of Few-Layer Graphene. Nanomaterials, 2019, 9, 44.	1.9	22
42	Pseudohexagonal crystallinity and thermal and tensile properties of ethene-propene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1095-1103.	2.4	21
43	Control of organoclay structure in hydrocarbon polymers. Polymers for Advanced Technologies, 2010, 21, 679-684.	1.6	21
44	Organoclays with hexagonal rotator order for the paraffinic chains of the compensating cation. Implications on the structure of clay polymer nanocomposites. Applied Clay Science, 2014, 87, 179-188.	2.6	20
45	Selective edge functionalization of graphene layers with oxygenated groups by means of Reimer–Tiemann and domino Reimer–Tiemann/Cannizzaro reactions. Journal of Materials Chemistry A, 2018, 6, 7749-7761.	5.2	20
46	Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite. Biomacromolecules, 2017, 18, 3978-3991.	2.6	19
47	Facile and sustainable functionalization of graphene layers with pyrrole compounds. Pure and Applied Chemistry, 2018, 90, 253-270.	0.9	19
48	Polyhydroxylated few layer graphene for the preparation of flexible conductive carbon paper. RSC Advances, 2016, 6, 87767-87777.	1.7	18
49	Catalytic Ozonation Using Edge-Hydroxylated Graphite-Based Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 17443-17452.	3.2	18
50	Penultimate Unit Effect in Ethene/Propene Copolymerization Promoted at High Temperature by Single Center Catalysts. Macromolecules, 2006, 39, 8223-8228.	2.2	17
51	Supramolecular interactions of carbon nanotubes with biosourced polyurethanes from 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol. Polymer, 2015, 63, 62-70.	1.8	17
52	New polyolefin elastomers from metallocenes. Macromolecular Symposia, 1995, 89, 259-275.	0.4	16
53	Thermal stability of ammonium salts as compatibilizers in polymer/layered silicate nanocomposites. E-Polymers, 2009, 9, .	1.3	16
54	Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide. Frontiers in Chemistry, 2013, 1, 28.	1.8	16

MAURIZIO GALIMBERTI

#	Article	IF	CITATIONS
55	Reduction of filler networking in silica based elastomeric nanocomposites with exfoliated organo-montmorillonite. Applied Clay Science, 2017, 135, 168-175.	2.6	16
56	Tuning the Solubility Parameters of Carbon Nanotubes by Means of Their Adducts with Janus Pyrrole Compounds. Nanomaterials, 2020, 10, 1176.	1.9	15
57	Ethene/Propene Copolymerizations from Metallocene-Based Catalytic Systems: The Role of Comonomer Concentrations. Macromolecular Chemistry and Physics, 2001, 202, 2029-2037.	1.1	14
58	Functionalized polymers from Ziegler-Natta catalysts. Journal of Molecular Catalysis A, 1995, 101, 1-10.	4.8	13
59	Isoselectivity and Steric Hindrance of C ₂ Symmetric Metallocenes as the Keys to Control Structural and Thermal Features of Ethene/4-Methyl-1-Pentene Copolymers. Macromolecules, 2011, 44, 3712-3722.	2.2	13
60	Delamination of organically modified montmorillonite for reducing the filler networking with carbon black in poly(1,4-cis-isoprene) based nanocomposites. Applied Clay Science, 2015, 104, 8-17.	2.6	13
61	Ethene/propene copolymerisations with rac-EBTHIZrR2/alumoxane: σ-ligands effect. Journal of Molecular Catalysis A, 2000, 160, 229-236.	4.8	12
62	The origin of synergism between an organoclay and carbon black. Applied Clay Science, 2013, 83-84, 449-456.	2.6	12
63	Anisotropic Nonlinear Mechanical Behavior in Carbon Nanotubes/Poly(1,4-cis-isoprene) Nanocomposites. Macromolecules, 2016, 49, 8686-8696.	2.2	12
64	Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano- and nano-structured sp2 carbon allotropes. EXPRESS Polymer Letters, 2017, 11, 435-448.	1.1	12
65	Packaging technology for improving shelfâ€life of fruits based on a nanoporous–crystalline polymer. Journal of Applied Polymer Science, 2018, 135, 46256.	1.3	12
66	sp2 carbon allotropes in elastomer matrix: From master curves for the mechanical reinforcement to lightweight materials. EXPRESS Polymer Letters, 2018, 12, 265-283.	1.1	11
67	Graphene Layers Functionalized with A Janus Pyrrole-Based Compound in Natural Rubber Nanocomposites with Improved Ultimate and Fracture Properties. Polymers, 2020, 12, 944.	2.0	11
68	Syndiotactic poly[(S)-4-methyl-1-hexene]. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 467-469.	1.1	10
69	Crystalline syndiotactic poly(1-pentene). Macromolecular Rapid Communications, 1994, 15, 633-638.	2.0	10
70	Toward block copolymers from nonliving isospecific singleâ€site catalytic systems. Journal of Polymer Science Part A, 2010, 48, 2063-2075.	2.5	10
71	Anisotropic properties of elastomeric nanocomposites based on natural rubber and sp2 carbon allotropes. EXPRESS Polymer Letters, 2018, 12, 713-730.	1.1	9
72	Environmentally Friendly and Regioselective One-Pot Synthesis of Imines and Oxazolidines Serinol Derivatives and Their Use for Rubber Cross-Linking. ACS Sustainable Chemistry and Engineering, 2020, 8, 9356-9366.	3.2	9

Maurizio Galimberti

#	Article	IF	CITATIONS
73	Nanocomposites of Poly(1,4â€ <i>cis</i> â€lsoprene) with Graphite Oxide Intercalation Compounds. Macromolecular Chemistry and Physics, 2013, 214, 1931-1939.	1.1	8
74	Hybrid filler systems in rubber nanocomposites. , 2017, , 349-414.		8
75	Edge Functionalized Graphene Layers for (Ultra) High Exfoliation in Carbon Papers and Aerogels in the Presence of Chitosan. Materials, 2020, 13, 39.	1.3	8
76	Polyether from a biobased Janus molecule as surfactant for carbon nanotubes. EXPRESS Polymer Letters, 2016, 10, 548-558.	1.1	6
77	New tethered ansaâ€bridged zirconium catalysts: Insights into the "selfâ€immobilization―mechanism. Journal of Polymer Science Part A, 2013, 51, 1436-1447.	2.5	5
78	CHAPTER 2. Nanofillers in Natural Rubber. RSC Polymer Chemistry Series, 2013, , 34-72.	0.1	5
79	Ethylene/propylene copolymers with vanadium-based catalysts: Cocatalyst effect. Polymers for Advanced Technologies, 1993, 4, 429-434.	1.6	4
80	Transition-metal organometallic compounds as cocatalysts in olefin polymerization with magnesium chloride-supported catalysts. Macromolecules, 1993, 26, 6771-6775.	2.2	4
81	A Grapheneâ€Based Supramolecular Nanoreactor for the Fast Synthesis of Imines in Water. Small, 2020, 16, e2001207.	5.2	4
82	SERINOL DERIVATIVES FOR THE SUSTAINABLE VULCANIZATION OF DIENE ELASTOMERS. Rubber Chemistry and Technology, 2018, 91, 701-718.	0.6	4
83	Facile Edge Functionalization of Graphene Layers with a Biosourced 2-Pyrone. ACS Sustainable Chemistry and Engineering, 2022, 10, 4082-4093.	3.2	4
84	13. New Heterogeneous Catalysts for Polyolefins. Studies in Surface Science and Catalysis, 1994, , 139-151.	1.5	3
85	Processing and strain induced crystallization and reinforcement under strain of poly(1,4-cis-isoprene) from Ziegler–Natta catalysis, hevea brasiliensis, taraxacum kok-saghyz and partenium argentatum. Advanced Industrial and Engineering Polymer Research, 2019, 2, 1-12.	2.7	3
86	Functionalized sp2 carbon allotropes as fillers for rubber nanocomposites. , 2020, , 43-92.		3
87	Elastomeric Compounds with Silica. Lower Hysteresis in the Presence of Functionalised Isoprene Oligomers. Macromolecular Symposia, 2006, 234, 203-210.	0.4	2
88	Influence of Tacticity of Propylene Placement on Structure and Properties of Ethylene/Propylene Copolymers. , 2007, , 313-341.		2
89	Reinforcement of diene elastomers by organically modified layered silicates. E-Polymers, 2009, 9,	1.3	2
90	Random propene/4â€methylâ€1â€pentene copolymers synthesized with C ₂ symmetric highly isospecific metallocenes. Journal of Polymer Science Part A, 2015, 53, 2575-2585.	2.5	2

MAURIZIO GALIMBERTI

#	Article	IF	CITATIONS
91	CHAPTER 23. Microscopy of Natural Rubber Composites and Nanocomposites. RSC Polymer Chemistry Series, 2013, , 649-682.	0.1	1
92	Controlled Functionalization of Graphene Layers. , 0, , .		1
93	Novel nanobiocomposite hydrogels based on gelatin/chitosan and functionalized graphene. AIP Conference Proceedings, 2018, , .	0.3	1
94	Silica-Based Composites with Enhanced Rheological Properties Thanks to a Nanosized Graphite Functionalized with Serinol Pyrrole. Applied Sciences (Switzerland), 2021, 11, 11410.	1.3	1
95	Polyhydroxylated Nanosized Graphite as Multifunctional Building Block for Polyurethanes. Polymers, 2022, 14, 1159.	2.0	1
96	Panel discussion II molecular mechanisms of polymerization catalysis. Makromolekulare Chemie Macromolecular Symposia, 1993, 66, 329-334.	0.6	0
97	Structural and spectroscopic characterization of fluorinated dioxole based salts: a combined experimental and computational study. Journal of Molecular Structure, 2013, 1044, 109-115.	1.8	0
98	Interactive effects between carbon allotropes on the mechanical reinforcement of nanocomposites based on poly(1,4-cis-isoprene). , 2014, , .		0
99	Mechanical Reinforcement in a Polyisoprene Rubber by Hybrid Nanofillers. Springer Series in Materials Science, 2017, , 447-459.	0.4	0
100	Bionanocomposites based on a covalent network of chitosan and edge functionalized graphene layers. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002110174.	0.7	0