Edgar Marcelino de Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3687466/publications.pdf

Version: 2024-02-01

128 papers 5,641 citations

66343 42 h-index 70 g-index

129 all docs

129 docs citations

times ranked

129

3971 citing authors

#	Article	IF	Citations
1	Up-Regulation of Th1-Type Responses in Mucosal Leishmaniasis Patients. Infection and Immunity, 2002, 70, 6734-6740.	2.2	306
2	Decreased In Situ Expression of Interleukin-10 Receptor Is Correlated with the Exacerbated Inflammatory and Cytotoxic Responses Observed in Mucosal Leishmaniasis. Infection and Immunity, 2005, 73, 7853-7859.	2.2	185
3	Miltefosine in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis in Brazil: A Randomized and Controlled Trial. PLoS Neglected Tropical Diseases, 2010, 4, e912.	3.0	185
4	Serial Quantitative PCR Assay for Detection, Species Discrimination, and Quantification of Leishmania spp. in Human Samples. Journal of Clinical Microbiology, 2011, 49, 3892-3904.	3.9	169
5	HTLV†decreases Th2 type of immune response in patients with strongyloidiasis. Parasite Immunology, 2001, 23, 503-507.	1.5	163
6	CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1 \hat{l}^2 production. PLoS Pathogens, 2017, 13, e1006196.	4.7	160
7	Disseminated Leishmaniasis: A New and Emerging Form of Leishmaniasis Observed in Northeastern Brazil. Journal of Infectious Diseases, 2002, 186, 1829-1834.	4.0	154
8	Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis. Immunology Letters, 2005, 101, 226-230.	2.5	145
9	IL-17 Mediates Immunopathology in the Absence of IL-10 Following Leishmania major Infection. PLoS Pathogens, 2013, 9, e1003243.	4.7	144
10	The Role of Nitric Oxide and Reactive Oxygen Species in the Killing of Leishmania braziliensis by Monocytes from Patients with Cutaneous Leishmaniasis. PLoS ONE, 2016, 11, e0148084.	2.5	144
11	Selection of a Skin Test Antigen for American Visceral Leishmaniasis *. American Journal of Tropical Medicine and Hygiene, 1986, 35, 79-85.	1.4	141
12	Genomic Profiling of Human Leishmania braziliensis Lesions Identifies Transcriptional Modules Associated with Cutaneous Immunopathology. Journal of Investigative Dermatology, 2015, 135, 94-101.	0.7	130
13	Oral Pentoxifylline Combined with Pentavalent Antimony: A Randomized Trial for Mucosal Leishmaniasis. Clinical Infectious Diseases, 2007, 44, 788-793.	5.8	124
14	Interleukin 17 Production among Patients with American Cutaneous Leishmaniasis. Journal of Infectious Diseases, 2009, 200, 75-78.	4.0	120
15	Evidence of a T helper type 2 activation in human schistosomiasis. European Journal of Immunology, 1996, 26, 1399-1403.	2.9	113
16	Impaired T Helper 2 Response to Aeroallergen in Helminthâ€Infected Patients with Asthma. Journal of Infectious Diseases, 2004, 190, 1797-1803.	4.0	106
17	The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of human tegumentary leishmaniasis. Cytokine, 2014, 66, 127-132.	3.2	105
18	Human Classical Monocytes Control the Intracellular Stage of Leishmania braziliensis by Reactive Oxygen Species. Journal of Infectious Diseases, 2014, 209, 1288-1296.	4.0	99

2

#	Article	IF	CITATIONS
19	Protective and Pathological Functions of CD8 ⁺ T Cells in Leishmania braziliensis Infection. Infection and Immunity, 2015, 83, 898-906.	2.2	97
20	Mucosal leishmaniasis: epidemiological and clinical aspects. Brazilian Journal of Otorhinolaryngology, 2007, 73, 843-847.	1.0	96
21	Cytokine Profile and Immunomodulation in Asymptomatic Human T-Lymphotropic Virus Type 1–Infected Blood Donors. Journal of Acquired Immune Deficiency Syndromes (1999), 2001, 27, 1-6.	2.1	93
22	Failure of Early Treatment of Cutaneous Leishmaniasis in Preventing the Development of an Ulcer. Clinical Infectious Diseases, 2002, 34, e69-e73.	5.8	86
23	Protective and pathologic immune responses in human tegumentary leishmaniasis. Frontiers in Immunology, 2012, 3, 301.	4.8	86
24	Exacerbated inflammatory cellular immune response characteristics of HAM/TSP is observed in a large proportion of HTLV-I asymptomatic carriers. BMC Infectious Diseases, 2004, 4, 7.	2.9	85
25	Influence of Helminth Infections on the Clinical Course of and Immune Response toLeishmania braziliensisCutaneous Leishmaniasis. Journal of Infectious Diseases, 2007, 195, 142-148.	4.0	74
26	Clinical Manifestations Associated with HTLV Type I Infection: A Cross-Sectional Study. AIDS Research and Human Retroviruses, 2007, 23, 365-371.	1.1	71
27	Neurological Manifestations in Human T-Cell Lymphotropic Virus Type 1 (HTLV-1)–Infected Individuals Without HTLV-1–Associated Myelopathy/Tropical Spastic Paraparesis: A Longitudinal Cohort Study. Clinical Infectious Diseases, 2015, 61, 49-56.	5.8	70
28	Association of Treatment of American Cutaneous Leishmaniasis Prior to Ulcer Development with High Rate of Failure in Northeastern Brazil. American Journal of Tropical Medicine and Hygiene, 2009, 80, 574-579.	1.4	68
29	Macrophages participate in host protection and the disease pathology associated with Leishmania braziliensisinfection. BMC Infectious Diseases, 2012, 12, 75.	2.9	67
30	Association between an Emerging Disseminated form of Leishmaniasis and Leishmania (Viannia) braziliensis Strain Polymorphisms. Journal of Clinical Microbiology, 2012, 50, 4028-4034.	3.9	66
31	Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis. Science Translational Medicine, 2019, 11 , .	12.4	63
32	Intermediate Monocytes Contribute to Pathologic Immune Response in <i>Leishmania braziliensis</i> Infections. Journal of Infectious Diseases, 2015, 211, 274-282.	4.0	62
33	Schistosoma mansoni infection modulates the immune response against allergic and auto-immune diseases. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 27-32.	1.6	57
34	Variation of Cytokine Patterns Related to Therapeutic Response in Diffuse Cutaneous Leishmaniasis. Experimental Parasitology, 1996, 84, 188-194.	1.2	56
35	Fluconazole in the Treatment of Cutaneous Leishmaniasis Caused by <i>Leishmania braziliensis</i> Randomized Controlled Trial. Clinical Infectious Diseases, 2017, 64, 67-71.	5.8	55
36	Atypical Manifestations of Cutaneous Leishmaniasis in a Region Endemic for Leishmania braziliensis: Clinical, Immunological and Parasitological Aspects. PLoS Neglected Tropical Diseases, 2016, 10, e0005100.	3.0	54

#	Article	IF	CITATIONS
37	Urinary Symptoms Associated with Human T-Cell Lymphotropic Virus Type I Infection: Evidence of Urinary Manifestations in Large Group of HTLV-I Carriers. Urology, 2007, 69, 813-818.	1.0	52
38	IL- $1\hat{l}^2$ Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. Journal of Investigative Dermatology, 2018, 138, 1107-1115.	0.7	52
39	Treatment of Disseminated Leishmaniasis With Liposomal Amphotericin B. Clinical Infectious Diseases, 2015, 61, 945-949.	5 . 8	49
40	Antimony plus Recombinant Human Granulocyteâ€Macrophage Colonyâ€Stimulating Factor Applied Topically in Low Doses Enhances Healing of Cutaneous Leishmaniasis Ulcers: A Randomized, Doubleâ€Blind, Placeboâ€Controlled Study. Journal of Infectious Diseases, 2004, 190, 1793-1796.	4.0	48
41	Clinical manifestations in individuals with recent diagnosis of HTLV type I infection. Journal of Clinical Virology, 2011, 51, 54-58.	3.1	48
42	Association of treatment of American cutaneous leishmaniasis prior to ulcer development with high rate of failure in northeastern Brazil. American Journal of Tropical Medicine and Hygiene, 2009, 80, 574-9.	1.4	47
43	High Continuous Antimony Therapy in Two Patients with Unresponsive Mucosal Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 1985, 34, 710-713.	1.4	44
44	Clinical and Immunological Outcome in Cutaneous Leishmaniasis Patients Treated with Pentoxifylline. American Journal of Tropical Medicine and Hygiene, 2014, 90, 617-620.	1.4	42
45	Mucosal leishmaniasis: A Retrospective Study of 327 Cases from an Endemic Area of Leishmania (Viannia) braziliensis. American Journal of Tropical Medicine and Hygiene, 2017, 97, 761-766.	1.4	41
46	SUCCESSFUL TREATMENT OF REFRACTORY CUTANEOUS LEISHMANIASIS WITH GM-CSF AND ANTIMONIALS. American Journal of Tropical Medicine and Hygiene, 2005, 73, 79-81.	1.4	40
47	Prevalence of Erectile Dysfunction in HTLV-1–Infected Patients and Its Association With Overactive Bladder. Urology, 2010, 75, 1100-1103.	1.0	39
48	A proposed new clinical staging system for patients with mucosal leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 376-381.	1.8	38
49	Urinary and sexual manifestations of patients infected by HTLV-I. Clinics, 2007, 62, 191-196.	1.5	35
50	Microbiological and Immunological Features of Oral Candidiasis. Microbiology and Immunology, 2007, 51, 713-719.	1.4	33
51	LEISHMANIASIS RECIDIVA CUTIS IN AMERICAN CUTANEOUS LEISHMANIASIS. International Journal of Dermatology, 1993, 32, 802-805.	1.0	30
52	Antihelminthic Therapy and Antimony in Cutaneous Leishmaniasis: A Randomized, Double-Blind, Placebo-Controlled Trial in Patients Co-Infected with Helminths and Leishmania braziliensis. American Journal of Tropical Medicine and Hygiene, 2011, 84, 551-555.	1.4	30
53	IFN-Î ³ Production to Leishmania Antigen Supplements the Leishmania Skin Test in Identifying Exposure to L. braziliensis Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1947.	3.0	30
54	Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis. Journal of Infectious Diseases, 2020, 221, 973-982.	4.0	30

#	Article	IF	CITATIONS
55	Characterization of Neutrophil Function in Human Cutaneous Leishmaniasis Caused by Leishmania braziliensis. PLoS Neglected Tropical Diseases, 2016, 10, e0004715.	3.0	30
56	Tr-1–Like CD4+CD25â^'CD127â^'/lowFOXP3â^' Cells Are the Main Source of Interleukin 10 in Patients With Cutaneous Leishmaniasis Due to Leishmania braziliensis. Journal of Infectious Diseases, 2015, 211, 708-718.	4.0	29
57	Oral Pentoxifylline Associated with Pentavalent Antimony: A Randomized Trial for Cutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1155-1159.	1.4	29
58	Modulation of T Cell Responses in HTLV-1 Carriers and in Patients with Myelopathy Associated with HTLV-1. NeuroImmunoModulation, 2006, 13, 145-151.	1.8	28
59	Tamoxifen and meglumine antimoniate combined therapy in cutaneous leishmaniasis patients: a randomised trial. Tropical Medicine and International Health, 2018, 23, 936-942.	2.3	27
60	Immunological and viral features in patients with overactive bladder associated with human Tâ€eell lymphotropic virus type 1 infection. Journal of Medical Virology, 2012, 84, 1809-1817.	5.0	26
61	Immunologic Markers of Protection in <i>Leishmania (Viannia) braziliensis</i> lnfection: A 5-Year Cohort Study. Journal of Infectious Diseases, 2016, 214, 570-576.	4.0	26
62	Phenotypic and functional characteristics of HLA-DR+ neutrophils in Brazilians with cutaneous leishmaniasis. Journal of Leukocyte Biology, 2017, 101, 739-749.	3.3	25
63	Basidiobolomycosis: A Case Report. Pediatric Dermatology, 1991, 8, 325-328.	0.9	24
64	Immunopathogenesis and neurological manifestations associated to HTLV-1 infection. Revista Da Sociedade Brasileira De Medicina Tropical, 2012, 45, 545-552.	0.9	24
65	Comparative analysis of the tissue inflammatory response in human cutaneous and disseminated leishmaniasis. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 202-209.	1.6	24
66	Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania braziliensis Infection. Journal of Investigative Dermatology, 2020, 140, 246-249.e2.	0.7	24
67	Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy. Journal of Infectious Diseases, 2018, 217, 840-850.	4.0	22
68	The cause of urinary symptoms among Human T Lymphotropic Virus Type I (HLTV-I) infected patients: a cross sectional study. BMC Infectious Diseases, 2007, 7, 15.	2.9	21
69	Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis. BMC Infectious Diseases, 2013, 13, 529.	2.9	21
70	Interleukin 10–Dominant Immune Response and Increased Risk of Cutaneous Leishmaniasis After Natural Exposure to Lutzomyia intermedia Sand Flies. Journal of Infectious Diseases, 2015, 212, 157-165.	4.0	21
71	Successful treatment of refractory cutaneous leishmaniasis with GM-CSF and antimonials. American Journal of Tropical Medicine and Hygiene, 2005, 73, 79-81.	1.4	21
72	Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e3283.	3.0	20

#	Article	IF	CITATIONS
73	Role of Urine Neutrophil Gelatinase-Associated Lipocalin in the Early Diagnosis of Amphotericin B-Induced Acute Kidney Injury. Antimicrobial Agents and Chemotherapy, 2015, 59, 6913-6921.	3.2	20
74	Association of Sicca Syndrome with Proviral Load and Proinflammatory Cytokines in HTLV-1 Infection. Journal of Immunology Research, 2016, 2016, 1-6.	2.2	20
75	Pentoxifylline down modulate in vitro T cell responses and attenuate pathology in Leishmania and HTLV-I infections. International Immunopharmacology, 2008, 8, 1344-1353.	3.8	18
76	Age Modifies the Immunologic Response and Clinical Presentation of American Tegumentary Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1173-1177.	1.4	18
77	Association between urinary symptoms and quality of life in HTLV-1 infected subjects without myelopathy. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2013, 39, 861-866.	1.5	17
78	Human CD8+ T Cells Release Extracellular Traps Co-Localized With Cytotoxic Vesicles That Are Associated With Lesion Progression and Severity in Human Leishmaniasis. Frontiers in Immunology, 2020, 11, 594581.	4.8	16
79	The Elderly Respond to Antimony Therapy for Cutaneous Leishmaniasis Similarly to Young Patients but Have Severe Adverse Reactions. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1317-1324.	1.4	16
80	CD8+ T cells in situ in different clinical forms of human cutaneous leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical, 2013, 46, 728-734.	0.9	15
81	Functional Activity of Monocytes and Macrophages in HTLV-1 Infected Subjects. PLoS Neglected Tropical Diseases, 2014, 8, e3399.	3.0	15
82	Impaired TNF, IL- $1\hat{1}^2$, and IL-17 production and increased susceptibility to Mycobacterium tuberculosis infection in HTLV-1 infected individuals. Tuberculosis, 2018, 108, 35-40.	1.9	15
83	Parasite-specific humoral responses in different clinical forms of strongyloidiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1987, 81, 149-150.	1.8	14
84	The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania (Viannia) braziliensis Populations, but Functional Sites Are Conserved. PLoS ONE, 2016, 11, e0163284.	2.5	14
85	Schistosoma mansoni antigens alter activation markers and cytokine profile in lymphocytes of patients with asthma. Acta Tropica, 2017, 166, 268-279.	2.0	13
86	Prevalence and risk factors for Human T-Lymphotropic Virus Type 1 (HTLV-1) among maintenance hemodialysis patients. BMC Nephrology, 2017, 18, 64.	1.8	13
87	Schistosoma mansoni rSm29 Antigen Induces a Regulatory Phenotype on Dendritic Cells and Lymphocytes From Patients With Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 3122.	4.8	12
88	Impaired Th1 Response Is Associated With Therapeutic Failure in Patients With Cutaneous Leishmaniasis Caused by (i>Leishmania braziliensis (i>. Journal of Infectious Diseases, 2021, 223, 527-535.	4.0	12
89	High Anti-Leishmania IgG Antibody Levels Are Associated With Severity of Mucosal Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 652956.	3.9	11
90	Blockade of TLR2 and TLR4 Attenuates Inflammatory Response and Parasite Load in Cutaneous Leishmaniasis. Frontiers in Immunology, 2021, 12, 706510.	4.8	11

#	Article	IF	CITATIONS
91	Familial aggregation of mucosal leishmaniasis in northeast Brazil. American Journal of Tropical Medicine and Hygiene, 2005, 73, 69-73.	1.4	11
92	Association between Mite Allergen (Der p 1, Der f 1, Blo t 5) Levels and Microscopic Identification of Mites or Skin Prick Test Results in Asthmatic Subjects. International Archives of Allergy and Immunology, 2002, 129, 237-241.	2.1	10
93	HCV/HTLV coinfection: Does HTLV-1 interfere in the natural history of HCV-related diseases?. Journal of Medical Virology, 2016, 88, 1967-1972.	5.0	10
94	Inflammasome Activation by CD8+ T Cells from Patients with Cutaneous Leishmaniasis Caused by Leishmania braziliensis in the Immunopathogenesis of the Disease. Journal of Investigative Dermatology, 2021, 141, 209-213.e2.	0.7	10
95	Evaluation of the Microbicidal Activity and Cytokines/Chemokines Profile Released by Neutrophils from HTLVâ€1â€Infected Individuals. Scandinavian Journal of Immunology, 2011, 74, 310-317.	2.7	9
96	Early Suppression of Macrophage Gene Expression by Leishmania braziliensis. Frontiers in Microbiology, 2018, 9, 2464.	3.5	9
97	Local and systemic production of proinflammatory chemokines in the pathogenesis of HAM/TSP. Cellular Immunology, 2018, 334, 70-77.	3.0	9
98	The Role of NK Cells in the Control of Viral Infection in HTLV-1 Carriers. Journal of Immunology Research, 2019, 2019, 1-9.	2.2	9
99	A Double-blind, Randomized Trial to Evaluate Miltefosine and Topical Granulocyte Macrophage Colony-stimulating Factor in the Treatment of Cutaneous Leishmaniasis Caused by <i>Leishmania braziliensis</i> i> in Brazil. Clinical Infectious Diseases, 2021, 73, e2465-e2469.	5.8	9
100	Anti-Leishmania IgG is a marker of disseminated leishmaniasis caused by Leishmania braziliensis. International Journal of Infectious Diseases, 2021, 106, 83-90.	3.3	9
101	Effects of Physiotherapy in the Treatment of Neurogenic Bladder in Patients Infected With Human T-Lymphotropic Virus 1. Urology, 2016, 89, 33-39.	1.0	8
102	CD45RO+ T Cells and T Cell Activation in the Long-Lasting Immunity after Leishmania infantum Infection. American Journal of Tropical Medicine and Hygiene, 2018, 98, 875-882.	1.4	7
103	Insulin-like growth factor-I serum levels and their biological effects on Leishmania isolates from different clinical forms of American tegumentary leishmaniasis. Parasites and Vectors, 2016, 9, 335.	2.5	6
104	Association of Tuberculosis Status with Neurologic Disease and Immune Response in HTLV-1 Infection. AIDS Research and Human Retroviruses, 2017, 33, 1126-1133.	1.1	6
105	Susceptibility of dendritic cells from individuals with schistosomiasis to infection by Leishmania braziliensis. Molecular Immunology, 2018, 93, 173-183.	2.2	6
106	The Influence of Infection by Different Leishmania (Viannia) braziliensis Isolates on the Pathogenesis of Disseminated Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 740278.	3.9	6
107	Diabetes Modifies the Clinic Presentation of Cutaneous Leishmaniasis. Open Forum Infectious Diseases, 2020, 7, ofaa491.	0.9	6
108	Impaired Lymphocyte Profile in Schistosomiasis Patients with Periportal Fibrosis. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	5

#	Article	lF	CITATIONS
109	The use of botulinum toxin type A in the treatment of HTLV-1-associated overactive bladder refractory to conventional therapy. Revista Da Sociedade Brasileira De Medicina Tropical, 2014, 47, 528-532.	0.9	5
110	A Th2-Type Response Is Associated With Exuberant Lesions in Pregnant Women Infected WithLeishmania braziliensis. Journal of Infectious Diseases, 2019, 219, 480-488.	4.0	5
111	Evaluation of the Ability of Miltefosine Associated with Topical GM-CSF in Modulating the Immune Response of Patients with Cutaneous Leishmaniasis. Journal of Immunology Research, 2020, 2020, 1-9.	2.2	5
112	Association of miltefosine with granulocyte and macrophage colony-stimulating factor (GM-CSF) in the treatment of cutaneous leishmaniasis in the Amazon region: A randomized and controlled trial. International Journal of Infectious Diseases, 2021, 103, 358-363.	3.3	5
113	Neurologic, clinical, and immunologic features in a cohort of HTLV-1 carriers with high proviral loads. Journal of NeuroVirology, 2020, 26, 520-529.	2.1	4
114	Phenotypic Characterization of CD4+ T Lymphocytes in Periportal Fibrosis Secondary to Schistosomiasis. Frontiers in Immunology, 2021, 12, 605235.	4.8	4
115	Prevalence of Bowel Symptoms in Patients Infected with Human T-Lymphotropic type 1 Virus. Revista Da Sociedade Brasileira De Medicina Tropical, 2019, 52, e20180486.	0.9	4
116	Protection and Pathology in Leishmania braziliensis Infection. Pathogens, 2022, 11, 466.	2.8	4
117	In VitroImmunomodulatory Activity of a Transition-State Analog Inhibitor of Human Purine Nucleoside Phosphorylase in Cutaneous Leishmaniasis. Journal of Immunology Research, 2017, 2017, 1-6.	2.2	3
118	Onabotulinumtoxin type A improves lower urinary tract symptoms and quality of life in patients with human T cell lymphotropic virus type 1 associated overactive bladder. Brazilian Journal of Infectious Diseases, 2018, 22, 79-84.	0.6	3
119	Influence of Obesity on Clinical Manifestations and Response to Therapy in Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Clinical Infectious Diseases, 2021, 73, 1020-1026.	5.8	3
120	Comment: seroprevalence of HTLV-1/2 among blood donors in the state of Maranhão Brazil✰✰See paper by Viana GM et al. on pages 50-3. Revista Brasileira De Hematologia E Hemoterapia, 2014, 36, 12-13.	O.7	2
121	Impairment of the humoral and CD4 + T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid. Human Immunology, 2016, 77, 674-681.	2.4	2
122	Impaired immunoregulatory network of the <scp>CD</scp> 4 T lymphocytes in refractory asthma. Clinical and Experimental Allergy, 2019, 49, 644-654.	2.9	2
123	Inhibition of gamma-secretase activity without interfering in Notch signalling decreases inflammatory response in patients with cutaneous leishmaniasis. Emerging Microbes and Infections, 2021, 10, 1219-1226.	6.5	2
124	Case Report: Unusual Presentation of Pharyngeal Mucosal Leishmaniasis due to Leishmania (Viannia) braziliensis. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1493-1495.	1.4	2
125	Immunological and viral features in patients with overactive bladder indicate an early stage of myelopathy. Retrovirology, 2011, 8, .	2.0	1
126	Author Reply. Urology, 2016, 89, 39.	1.0	0

EDGAR MARCELINO DE

#	Article	lF	CITATIONS
127	Bladder dysfunction in human T cell lymphotropic virus infection: A prospective cohort study. PLoS Neglected Tropical Diseases, 2022, 16, e0009772.	3.0	O
128	Leishmania braziliensis causing human disease in Northeast Brazil presents loci with genotypes in long-term equilibrium. PLoS Neglected Tropical Diseases, 2022, 16, e0010390.	3.0	0