
Andrei Chagin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686891/publications.pdf Version: 2024-02-01

ANDREI CHACIN

#	Article	IF	CITATIONS
1	Implantation of Various Cell-Free Matrixes Does Not Contribute to the Restoration of Hyaline Cartilage within Full-Thickness Focal Defects. International Journal of Molecular Sciences, 2022, 23, 292.	4.1	3
2	The epiphyseal secondary ossification center: Evolution, development and function. Bone, 2021, 142, 115701.	2.9	16
3	Postnatal skeletal growth is driven by the epiphyseal stem cell niche: potential implications to pediatrics. Pediatric Research, 2020, 87, 986-990.	2.3	25
4	Dietary nitrate attenuates high-fat diet-induced obesity via mechanisms involving higher adipocyte respiration and alterations in inflammatory status. Redox Biology, 2020, 28, 101387.	9.0	28
5	Niches for Skeletal Stem Cells of Mesenchymal Origin. Frontiers in Cell and Developmental Biology, 2020, 8, 592.	3.7	50
6	Absence of GP130 cytokine receptor signaling causes extended Stüve-Wiedemann syndrome. Journal of Experimental Medicine, 2020, 217, .	8.5	41
7	Epiphyseal Cartilage Formation Involves Differential Dynamics of Various Cellular Populations During Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 122.	3.7	7
8	Cruciate ligament, patellar tendon, and patella formation involves differential cellular sources and dynamics as joint cavitation proceeds. Developmental Dynamics, 2020, 249, 711-722.	1.8	4
9	Secondary ossification center induces and protects growth plate structure. ELife, 2020, 9, .	6.0	29
10	Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15068-15073.	7.1	51
11	Clonal Genetic Tracing using the Confetti Mouse to Study Mineralized Tissues. Journal of Visualized Experiments, 2019, , .	0.3	2
12	Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. British Journal of Anaesthesia, 2019, 122, 350-360.	3.4	83
13	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	27.8	153
14	Effects of the selective GPER1 agonist G1 on bone growth. Endocrine Connections, 2019, 8, 1302-1309.	1.9	8
15	Activation of mTORC1 in chondrocytes does not affect proliferation or differentiation, but causes the resting zone of the growth plate to become disordered. Bone Reports, 2018, 8, 64-71.	0.4	17
16	Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. ELife, 2018, 7, .	6.0	28
17	A Shared Epitope of Collagen Type XI and Type II Is Recognized by Pathogenic Antibodies in Mice and Humans with Arthritis. Frontiers in Immunology, 2018, 9, 451.	4.8	10
18	Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. International Journal of Molecular Sciences, 2018, 19, 2366.	4.1	179

ANDREI CHAGIN

#	Article	IF	CITATIONS
19	Genetic ablation of adenosine receptor A3 results in articular cartilage degeneration. Journal of Molecular Medicine, 2018, 96, 1049-1060.	3.9	13
20	Superficial cells are selfâ€renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB Journal, 2017, 31, 1067-1084.	0.5	92
21	Cartilage stem cells identified, but can they heal?. Nature Reviews Rheumatology, 2017, 13, 522-524.	8.0	16
22	Novel KIAA0753 mutations extend the phenotype of skeletal ciliopathies. Scientific Reports, 2017, 7, 15585.	3.3	21
23	Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. ELife, 2017, 6, .	6.0	46
24	Analysis of neural crest–derived clones reveals novel aspects of facial development. Science Advances, 2016, 2, e1600060.	10.3	68
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton. Current Opinion in Pharmacology, 2016, 28, 1-7.	3.5	56
27	Targeted deletion of Atg5 in chondrocytes promotes age-related osteoarthritis. Annals of the Rheumatic Diseases, 2016, 75, 627-631.	0.9	104
28	Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation. Journal of Bone and Mineral Research, 2015, 30, 2249-2261.	2.8	75
29	Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy, 2015, 11, 1594-1607.	9.1	40
30	Role of G-proteins in the differentiation of epiphyseal chondrocytes. Journal of Molecular Endocrinology, 2014, 53, R39-R45.	2.5	23
31	Dexamethasone differentially regulates Bcl-2 family proteins in human proliferative chondrocytes: Role of pro-apoptotic Bid. Toxicology Letters, 2014, 224, 196-200.	0.8	33
32	G-protein stimulatory subunit alpha and Gq/11α G-proteins are both required to maintain quiescent stem-like chondrocytes. Nature Communications, 2014, 5, 3673.	12.8	41
33	Mice depleted of the coxsackievirus and adenovirus receptor display normal spermatogenesis and an intact blood–testis barrier. Reproduction, 2014, 147, 875-883.	2.6	15
34	Resveratrol Treatment Delays Growth Plate Fusion and Improves Bone Growth in Female Rabbits. PLoS ONE, 2013, 8, e67859.	2.5	12
35	Insulin-like growth factor-1 restores dexamethasone-induced heart growth arrest in rats: the role of the ubiquitin pathway. Hormones, 2011, 10, 46-56.	1.9	4
36	Mechanisms of Growth Plate Maturation and Epiphyseal Fusion. Hormone Research in Paediatrics, 2011, 75, 383-391.	1.8	82

ANDREI CHAGIN

#	Article	IF	CITATIONS
37	Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 191-196.	7.1	89
38	Genetic Regulation of the Growth Plate. Frontiers in Endocrinology, 2011, 2, 113.	3.5	29
39	Expression of vascular endothelial growth factor in the growth plate is stimulated by estradiol and increases during pubertal development. Journal of Endocrinology, 2010, 205, 61-68.	2.6	21
40	Catch-up growth after dexamethasone withdrawal occurs in cultured postnatal rat metatarsal bones. Journal of Endocrinology, 2010, 204, 21-29.	2.6	40
41	Androgen Receptor Modulation Does Not Affect Longitudinal Growth of Cultured Fetal Rat Metatarsal Bones. Hormone Research in Paediatrics, 2009, 71, 219-227.	1.8	8
42	Epiphyseal Fusion in the Human Growth Plate Does not Involve Classical Apoptosis. Pediatric Research, 2009, 66, 654-659.	2.3	17
43	The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E490-E496.	3.5	96
44	Genes of Importance in the Hormonal Regulation of Growth Plate Cartilage. Hormone Research in Paediatrics, 2009, 71, 41-47.	1.8	16
45	Tamoxifen Impairs Both Longitudinal and Cortical Bone Growth in Young Male Rats. Journal of Bone and Mineral Research, 2008, 23, 1267-1277.	2.8	28
46	Effects of alendronate and pamidronate on cultured rat metatarsal bones: Failure to prevent dexamethasone-induced growth retardation. Bone, 2008, 42, 702-709.	2.9	14
47	The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone. Journal of Endocrinology, 2008, 197, R1-R6.	2.6	66
48	GPR30 Estrogen Receptor Expression in the Growth Plate Declines as Puberty Progresses. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4873-4877.	3.6	65
49	Proteasome Inhibition Up-regulates p53 and Apoptosis-Inducing Factor in Chondrocytes Causing Severe Growth Retardation in Mice. Cancer Research, 2007, 67, 10078-10086.	0.9	31
50	Tamoxifen induces permanent growth arrest through selective induction of apoptosis in growth plate chondrocytes in cultured rat metatarsal bones. Bone, 2007, 40, 1415-1424.	2.9	38
51	Oestrogen receptors and linear bone growth. Acta Paediatrica, International Journal of Paediatrics, 2007, 96, 1275-1279.	1.5	31
52	Estrogens and growth: review. Pediatric Endocrinology Reviews, 2007, 4, 329-34.	1.2	12
53	Locally produced estrogen promotes fetal rat metatarsal bone growth; an effect mediated through increased chondrocyte proliferation and decreased apoptosis. Journal of Endocrinology, 2006, 188, 193-203.	2.6	64
54	Dexamethasone Induces Apoptosis in Proliferative Chondrocytes through Activation of Caspases and Suppression of the Akt-Phosphatidylinositol 3′-Kinase Signaling Pathway. Endocrinology, 2005, 146, 1391-1397.	2.8	123

ANDREI CHAGIN

#	Article	IF	CITATIONS
55	Estrogen Receptor-β Inhibits Skeletal Growth and Has the Capacity to Mediate Growth Plate Fusion in Female Mice. Journal of Bone and Mineral Research, 2004, 19, 72-77.	2.8	89
56	Additive Protective Effects of Estrogen and Androgen Treatment on Trabecular Bone in Ovariectomized Rats. Journal of Bone and Mineral Research, 2004, 19, 1833-1839.	2.8	56
57	Internalization of growth factor-receptor complexes under the influence of antibodies initiates cell apoptosis in vitro. European Journal of Cell Biology, 1999, 78, 194-198.	3.6	1