
Bennett G Novitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686791/publications.pdf Version: 2024-02-01

RENNETT C. NOVITCH

#	Article	IF	CITATIONS
1	Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nature Neuroscience, 2003, 6, 1162-1168.	14.8	708
2	Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2. Neuron, 2001, 31, 773-789.	8.1	563
3	Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 2007, 450, 717-720.	27.8	539
4	Directed Differentiation of Human-Induced Pluripotent Stem Cells Generates Active Motor Neurons. Stem Cells, 2009, 27, 806-811.	3.2	331
5	Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Current Opinion in Cell Biology, 1994, 6, 788-794.	5.4	317
6	Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Reports, 2017, 21, 517-532.	6.4	305
7	Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle Journal of Cell Biology, 1996, 135, 441-456.	5.2	302
8	A Requirement for Retinoic Acid-Mediated Transcriptional Activation in Ventral Neural Patterning and Motor Neuron Specification. Neuron, 2003, 40, 81-95.	8.1	290
9	Sox9 and NFIA Coordinate a Transcriptional Regulatory Cascade during the Initiation of Gliogenesis. Neuron, 2012, 74, 79-94.	8.1	287
10	25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity, 2017, 46, 446-456.	14.3	276
11	Olig2 Directs Astrocyte and Oligodendrocyte Formation in Postnatal Subventricular Zone Cells. Journal of Neuroscience, 2005, 25, 7289-7298.	3.6	221
12	Coordinated Actions of the Forkhead Protein Foxp1 and Hox Proteins in the Columnar Organization of Spinal Motor Neurons. Neuron, 2008, 59, 226-240.	8.1	220
13	pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Current Biology, 1999, 9, 449-459.	3.9	212
14	Gli Protein Activity Is Controlled by Multisite Phosphorylation in Vertebrate Hedgehog Signaling. Cell Reports, 2014, 6, 168-181.	6.4	200
15	Dynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog. PLoS Biology, 2010, 8, e1000382.	5.6	184
16	Foxp-Mediated Suppression of N-Cadherin Regulates Neuroepithelial Character and Progenitor Maintenance in the CNS. Neuron, 2012, 74, 314-330.	8.1	157
17	Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord. Neuron, 2017, 94, 790-799.e3.	8.1	146
18	Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 57-70.	4.0	132

Bennett G Novitch

#	Article	IF	CITATIONS
19	ERK Inhibition Rescues Defects in Fate Specification of Nf1-Deficient Neural Progenitors and Brain Abnormalities. Cell, 2012, 150, 816-830.	28.9	124
20	Sonic Hedgehog Signaling Controls Thalamic Progenitor Identity and Nuclei Specification in Mice. Journal of Neuroscience, 2009, 29, 4484-4497.	3.6	120
21	Notch Activity Modulates the Responsiveness of Neural Progenitors to Sonic Hedgehog Signaling. Developmental Cell, 2015, 33, 373-387.	7.0	117
22	Identification of neural oscillations and epileptiform changes in human brain organoids. Nature Neuroscience, 2021, 24, 1488-1500.	14.8	112
23	The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. ELife, 2015, 4, e09268.	6.0	108
24	Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8770-8775.	7.1	104
25	Foxp1 and Lhx1 Coordinate Motor Neuron Migration with Axon Trajectory Choice by Gating Reelin Signalling. PLoS Biology, 2010, 8, e1000446.	5.6	80
26	Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biology, 2018, 16, e2003127.	5.6	77
27	Functional Neuromuscular Junctions Formed by Embryonic Stem Cell-Derived Motor Neurons. PLoS ONE, 2012, 7, e36049.	2.5	72
28	Onecut transcription factors act upstream of <i>Isl1</i> to regulate spinal motoneuron diversification. Development (Cambridge), 2012, 139, 3109-3119.	2.5	68
29	PLZF Regulates Fibroblast Growth Factor Responsiveness and Maintenance of Neural Progenitors. PLoS Biology, 2013, 11, e1001676.	5.6	59
30	Regulation of spinal interneuron development by the Olig-related protein Bhlhb5 and Notch signaling. Development (Cambridge), 2011, 138, 3199-3211.	2.5	57
31	Npn-1 Contributes to Axon-Axon Interactions That Differentially Control Sensory and Motor Innervation of the Limb. PLoS Biology, 2011, 9, e1001020.	5.6	54
32	Olig2+ neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1551-1556.	7.1	52
33	Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nature Communications, 2015, 6, 6778.	12.8	46
34	New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord. Current Topics in Developmental Biology, 2019, 132, 417-450.	2.2	46
35	<i>Hox5</i> interacts with <i>Plzf</i> to restrict <i>Shh</i> expression in the developing forelimb. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19438-19443.	7.1	43
36	Cbx3 maintains lineage specificity during neural differentiation. Genes and Development, 2017, 31, 241-246.	5.9	34

Bennett G Novitch

#	Article	IF	CITATIONS
37	Foxp1 Regulates Neural Stem Cell Self-Renewal and Bias Toward Deep Layer Cortical Fates. Cell Reports, 2020, 30, 1964-1981.e3.	6.4	32
38	All the Embryo's a Stage, and Olig2 in Its Time Plays Many Parts. Neuron, 2011, 69, 833-835.	8.1	24
39	Retinoid Acid Specifies Neuronal Identity through Graded Expression of Ascl1. Current Biology, 2013, 23, 412-418.	3.9	24
40	Molecular specification of facial branchial motor neurons in vertebrates. Developmental Biology, 2018, 436, 5-13.	2.0	8
41	Intramuscular delivery of neural crest stem cell spheroids enhances neuromuscular regeneration after denervation injury. Stem Cell Research and Therapy, 2022, 13, 205.	5.5	8
42	Reducing the Mystery of Neuronal Differentiation. Cell, 2009, 138, 1062-1064.	28.9	6
43	Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Reports, 2021, 16, 2548-2564.	4.8	5
44	Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. IScience, 2021, 24, 103140.	4.1	5
45	Neuronal Organization: Unsticking the Cadherin Code. Current Biology, 2014, 24, R1127-R1129.	3.9	3
46	Derivation of dorsal spinal sensory interneurons from human pluripotent stem cells. STAR Protocols, 2021, 2, 100319.	1.2	3
47	My Brain Told Me to Do It. Developmental Cell, 2013, 25, 436-438.	7.0	2
48	Coordinated Actions of the Forkhead Protein Foxp1 and Hox Proteins in the Columnar Organization of Spinal Motor Neurons. Neuron, 2008, 59, 674-675.	8.1	1