Hui-Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686301/publications.pdf

Version: 2024-02-01

		516710	642732
23	978	16	23
papers	citations	h-index	g-index
23	23	23	874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Highâ€Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo ₁₂ Coordination Polymer with Novel Waterâ€Assisted Proton Channels. Small, 2020, 16, e2001626.	10.0	124
2	Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 20845-20853.	8.0	89
3	Metal–Organic Framework Template-Directed Fabrication of Well-Aligned Pentagon-like Hollow Transition-Metal Sulfides as the Anode and Cathode for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 42621-42629.	8.0	83
4	Hierarchical Structured Ni ₃ S ₂ @rGO@NiAl-LDHs Nanoarrays: A Competitive Electrode Material for Advanced Asymmetrical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 2803-2810.	6.7	75
5	Two Novel Polyoxometalate-Encapsulated Metal–Organic Nanotube Frameworks as Stable and Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31498-31504.	8.0	73
6	Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. Journal of Power Sources, 2020, 446, 227319.	7.8	64
7	A coordination polymer based on dinuclear (pyrazinyl tetrazolate) copper(<scp>ii</scp>) cations and Wells–Dawson anions for high-performance supercapacitor electrodes. Dalton Transactions, 2017, 46, 13897-13902.	3.3	55
8	Mo-Based crystal POMOFs with a high electrochemical capacitor performance. Dalton Transactions, 2019, 48, 13026-13033.	3.3	50
9	Fe Foam-Supported FeS ₂ –MoS ₂ Electrocatalyst for N ₂ Reduction under Ambient Conditions. ACS Applied Materials & Description (1997) and the subset of	8.0	48
10	Facile Dual-Ligand Modulation Tactic toward Nickel–Cobalt Sulfides/Phosphides/Selenides as Supercapacitor Electrodes with Long-Term Durability and Electrochemical Activity. ACS Applied Materials & Diterfaces, 2019, 11, 41580-41587.	8.0	45
11	Polyoxometalate Metal–Organic Frameworks: Keggin Clusters Encapsulated into Silver-Triazole Nanocages and Open Frameworks with Supercapacitor Performance. Inorganic Chemistry, 2019, 58, 16028-16039.	4.0	42
12	Enhancing Energy Storage via TEAâ€Dependent Controlled Syntheses: Two Series of Polyoxometalateâ€Based Inorganicâ€Organic Hybrids and their Supercapacitor Properties. ChemElectroChem, 2018, 5, 3443-3450.	3.4	37
13	Highâ€Performance Supercapacitor Afforded by a Highâ€Connected Kegginâ€Based 3D Coordination Polymer. European Journal of Inorganic Chemistry, 2017, 2017, 5350-5355.	2.0	33
14	Multiâ€Interfaceâ€Modulated CoS ₂ @MoS ₂ Nanoarrays Derived by Predesigned Germanomolybdate Polymer Showing Ultrahighly Electrocatalytic Activity for Hydrogen Evolution Reaction in Wide pH Range. Advanced Materials Interfaces, 2020, 7, 2000780.	3.7	25
15	Nickel/Cobalt Molybdate Hollow Rods Induced by Structure and Defect Engineering as Exceptional Electrode Materials for Hybrid Supercapacitor. Chemistry - A European Journal, 2021, 27, 8337-8343.	3.3	20
16	Preparation and Application of Keggin Polyoxometalateâ€based 3D Coordination polymer Materials as Supercapacitors and Amperometric Sensors. ChemNanoMat, 2021, 7, 299-306.	2.8	19
17	Fabrication of double-shell hollow NiO@N-C nanotubes for a high-performance supercapacitor. New Journal of Chemistry, 2019, 43, 13457-13462.	2.8	17
18	Electrochemical sensor for rutin detection based on N-doped mesoporous carbon nanospheres and graphene. New Journal of Chemistry, 2021, 45, 4986-4993.	2.8	17

Hui-Yuan

#	Article	IF	CITATION
19	Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Mikrochimica Acta, 2020, 187, 483.	5.0	15
20	Enzymeless electrochemical determination of hydrogen peroxide at a heteropolyanion-based composite film electrode. New Journal of Chemistry, 2019, 43, 1053-1062.	2.8	14
21	Prussian blue nanocubes with an open framework structure coated with polyoxometalates as a highly sensitive platform for ascorbic acid detection in drinks/human urine. New Journal of Chemistry, 2019, 43, 9420-9429.	2.8	13
22	A polyoxometalate based electrochemical sensor for efficient detection of L-cysteine. Tungsten, 2022, 4, 138-148.	4.8	12
23	A Facile Strategy to Create Electrocatalysts of Highly Dispersive Ni–Mo Sulfide Nanosheets on Graphene by Derivation of Polyoxometalate Coordination Polymer for Advanced H∢sub>2⟨ sub⟩ Evolution. ACS Applied Energy Materials, 2021, 4, 13191-13198.	5.1	8