Steven G Parsons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Monthly Notices of the Royal Astronomical Society, 2012, 424, 333-347.	4.4	242
2	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	12.6	131
3	A radio-pulsing white dwarf binary star. Nature, 2016, 537, 374-377.	27.8	117
4	Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2591-2608.	4.4	111
5	Doppler imaging of the planetary debris disc at the white dwarf SDSSÂJ122859.93+104032.9. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4467-4478.	4.4	102
6	The planets around NNÂSerpentis: still thereâ~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 475-488.	4.4	97
7	The composition of a disrupted extrasolar planetesimal at SDSSÂJ0845+2257 (TonÂ345). Monthly Notices of the Royal Astronomical Society, 2015, 451, 3237-3248.	4.4	93
8	A search for optical bursts from the repeating fast radio burst FRB 121102. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2800-2807.	4.4	74
9	Cataclysmic variables below the period gap: mass determinations of 14 eclipsing systems. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2025-2041.	4.4	72
10	Variable emission from a gaseous disc around a metal-polluted white dwarf. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1878-1884.	4.4	72
11	Testing the white dwarf mass–radius relationship with eclipsing binaries. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4473-4492.	4.4	68
12	The scatter of the M dwarf mass–radius relationship. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1083-1096.	4.4	68
13	The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DRÂ9–12. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3808-3819.	4.4	61
14	GASEOUS MATERIAL ORBITING THE POLLUTED, DUSTY WHITE DWARF HE 1349–2305. Astrophysical Journal Letters, 2012, 751, L4.	8.3	59
15	Post-common envelope binaries from SDSS - XV. Accurate stellar parameters for a cool 0.4 M⊙ white dwarf and a 0.16 M⊙ M dwarf in a 3 h eclipsing binary. Monthly Notices of the Royal Astronomical Society, 2012, 419, 817-826.	4.4	55
16	1000 cataclysmic variables from the Catalina Real-time Transient Survey. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3174-3207.	4.4	54
17	Eclipsing post-common envelope binaries from the Catalina surveys. Monthly Notices of the Royal Astronomical Society, 2013, 429, 256-268.	4.4	53
18	Timing variations in the secondary eclipse of NN Ser. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L91-L95.	3.3	52

#	Article	IF	CITATIONS
19	The origin and evolution of magnetic white dwarfs in close binary stars. Nature Astronomy, 2021, 5, 648-654.	10.1	52
20	Interpretation and diversity of exoplanetary material orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 490, 202-218.	4.4	51
21	A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY. Astrophysical Journal Letters, 2011, 735, L30.	8.3	46
22	A <i>SPITZER SPACE TELESCOPE</i> STUDY OF THE DEBRIS DISKS AROUND FOUR SDSS WHITE DWARFS. Astrophysical Journal, 2012, 750, 86.	4.5	46
23	<i>Gaia</i> white dwarfs within 40 pc – I. Spectroscopic observations of new candidates. Monthly Notices of the Royal Astronomical Society, 2020, 497, 130-145.	4.4	45
24	The substellar companion in the eclipsing white dwarf binary SDSS J141126.20+200911.1. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2106-2115.	4.4	43
25	The evolutionary status of Cataclysmic Variables: eclipse modelling ofÂ15Âsystems. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5535-5551.	4.4	43
26	Constraining the evolution of cataclysmic variables via the masses and accretion rates of their underlying white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6110-6132.	4.4	43
27	An accurate mass and radius measurement for an ultracool white dwarf. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1950-1958.	4.4	42
28	Precise parameters for both white dwarfs in the eclipsing binary CSSÂ41177. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3399-3408.	4.4	42
29	Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3873-3887.	4.4	41
30	Detached cataclysmic variables are crossing the orbital period gap. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3867-3877.	4.4	39
31	Once in a blue moon: detection of â€~bluing' during debris transits in the white dwarf WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3213-3224.	4.4	39
32	The shortest period detached white dwarf + main-sequence binary. Monthly Notices of the Royal Astronomical Society, 2012, 419, 304-313.	4.4	38
33	The white dwarf binary pathways survey – I. A sample of FGK stars with white dwarf companions. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2125-2136.	4.4	35
34	Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2. Monthly Notices of the Royal Astronomical Society, 2017, 471, 976-986.	4.4	35
35	Evidence for Eccentric, Precessing Gaseous Debris in the Circumstellar Absorption toward WD 1145Â+Â017. Astrophysical Journal Letters, 2018, 852, L22.	8.3	35
36	A circumbinary debris disk in a polluted white dwarf system. Nature Astronomy, 2017, 1, .	10.1	34

#	Article	IF	CITATIONS
37	Composite hot subdwarf binaries – I. The spectroscopically confirmed sdB sample. Monthly Notices of the Royal Astronomical Society, 2018, 473, 693-709.	4.4	31
38	A magnetic white dwarf in a detached eclipsing binary. Monthly Notices of the Royal Astronomical Society, 2013, 436, 241-252.	4.4	30
39	14 new eclipsing white dwarf plus main-sequence binaries from the SDSS and Catalina surveys. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2194-2204.	4.4	30
40	The white dwarf binary pathways survey – II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4193-4203.	4.4	30
41	HiPERCAM: a quintuple-beam, high-speed optical imager on the 10.4-m Gran Telescopio Canarias. Monthly Notices of the Royal Astronomical Society, 2021, 507, 350-366.	4.4	30
42	High-speed photometry of Gaia14aae: an eclipsing AM CVn that challenges formation models. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1663-1679.	4.4	28
43	The crowded magnetosphere of the post-common-envelope binary QSÂVirginis. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2793-2812.	4.4	27
44	White dwarf–main sequence binaries from LAMOST: the DR5 catalogue. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4641-4654.	4.4	26
45	The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution. Astronomy and Astrophysics, 2014, 568, L9.	5.1	25
46	The first pre-supersoft X-ray binary. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1754-1763.	4.4	24
47	Hunting for eclipses: high-speed observations of cataclysmic variables. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4968-4984.	4.4	24
48	The first sub-70 min non-interacting WD–BD system: EPIC212235321. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1405-1411.	4.4	24
49	WD1032Â+Â011, an inflated brown dwarf in an old eclipsing binary with a white dwarf. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3571-3580.	4.4	23
50	The White Dwarf Binary Pathways Survey – IV. Three close white dwarf binaries with G-type secondary stars. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1677-1689.	4.4	23
51	SDSS J001153.08–064739.2, A CATACLYSMIC VARIABLE WITH AN EVOLVED DONOR IN THE PERIOD GAP. Astrophysical Journal, 2014, 790, 28.	4.5	22
52	The dust never settles: collisional production of gas and dust in evolved planetary systems. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5233-5242.	4.4	22
53	A precision study of two eclipsing white dwarf plus M dwarf binaries. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	21
54	The evolutionary state of short-period magnetic white dwarf binaries. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1437-1449.	4.4	21

#	Article	IF	CITATIONS
55	Using large spectroscopic surveys to test the double degenerate model for TypeÂla supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2910-2922.	4.4	21
56	SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured. Monthly Notices of the Royal Astronomical Society, 2017, 467, 1024-1032.	4.4	21
57	Accretion signatures in the X-shooter spectrum of the substellar companion to SR12. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2994-3003.	4.4	21
58	The direct detection of the irradiated brown dwarf in the white dwarf–brown dwarf binary SDSS J141126.20+200911.1. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5216-5222.	4.4	20
59	Magnetic white dwarfs in post-common-envelope binaries. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4305-4327.	4.4	20
60	THE MASS OF THE WHITE DWARF IN GW LIBRA. Astrophysical Journal Letters, 2010, 715, L109-L112.	8.3	19
61	Pulsations and eclipse-time analysis of HW Vir. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2721-2735.	4.4	18
62	A pulsating white dwarf in an eclipsing binary. Nature Astronomy, 2020, 4, 690-696.	10.1	18
63	Spectroscopic and photometric periods of six ultracompact accreting binaries. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1243-1261.	4.4	18
64	Evidence for mass accretion driven by spiral shocks onto the white dwarf in SDSS J123813.73–033933.0. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1080-1103.	4.4	17
65	PHL 1445: an eclipsing cataclysmic variable with a substellar donor near the period minimum. Monthly Notices of the Royal Astronomical Society, 2015, 451, 114-125.	4.4	16
66	Orbital periods and component masses of three double white dwarfs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1575-1581.	4.4	16
67	Magnetic dynamos in white dwarfs – II. Relating magnetism and pollution. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 506, L29-L34.	3.3	15
68	A radial velocity study of CTCV J1300â^'3052. Monthly Notices of the Royal Astronomical Society, 2012, 422, 469-477.	4.4	14
69	Discovery of ZZÂCetis in detached white dwarf plus main-sequence binaries. Monthly Notices of the Royal Astronomical Society, 2015, 447, 691-697.	4.4	14
70	A 15.7-Minute AMÂCVn Binary Discovered in K2. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	14
71	Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary. Nature Astronomy, 2019, 3, 553-560.	10.1	14
72	First light with HiPERCAM on the GTC. , 2018, , .		13

5

#	Article	IF	CITATIONS
73	The white dwarf binary pathways survey – VI. Two close post-common envelope binaries with <i>TESS</i> light curves. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1843-1856.	4.4	13
74	Magnetic dynamos in white dwarfs – III. Explaining the occurrence of strong magnetic fields in close double white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3090-3103.	4.4	13
75	The White Dwarf Binary Pathways Survey. V. The Gaia White Dwarf Plus AFGK Binary Sample and the Identification of 23 Close Binaries. Astrophysical Journal, 2020, 905, 38.	4.5	12
76	HST+COS spectra of the double white dwarf CSS 41177 place the secondary inside the pulsational instability strip. Monthly Notices of the Royal Astronomical Society, 2015, 448, 601-605.	4.4	11
77	Most EL CVn systems are inner binaries of hierarchical triples. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L121-L125.	3.3	8
78	The White Dwarf Binary Pathways Survey â^'III. Contamination from hierarchical triples containing a white dwarf. Monthly Notices of the Royal Astronomical Society, 2020, 494, 915-922.	4.4	8
79	The white dwarf binary pathways survey – VII. Evidence for a bi-modal distribution of post-mass transfer systems?. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2625-2635.	4.4	8
80	The post-common-envelope binary central star of the planetary nebula OuÂ5: a doubly eclipsing post-red-giant-branch system. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3102-3110.	4.4	8
81	Characterizing eclipsing white dwarf M dwarf binaries from multiband eclipse photometry. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3050-3064.	4.4	6
82	A J-band detection of the donor star in the dwarf nova OY Carinae and an optical detection of its â€~iron curtain'. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	5
83	Breaking the Degeneracy in Magnetic Cataclysmic Variable X-Ray Spectral Modeling Using X-Ray Light Curves. Astrophysical Journal, Supplement Series, 2021, 256, 45.	7.7	5
84	Uncovering the chemical structure of the pulsating low-mass white dwarf SDSS J115219.99+024814.4. Monthly Notices of the Royal Astronomical Society, 2021, 510, 858-869.	4.4	5
85	Circular polarimetry of suspect wind-accreting magnetic pre-polars. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3858-3870.	4.4	4
86	Optical detection of the rapidly spinning white dwarf in V1460 Her. Monthly Notices of the Royal Astronomical Society, 2021, 507, 6132-6139.	4.4	3
87	System parameters of three short-period cataclysmic variable stars. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5086-5101.	4.4	3