Niladri Basu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3686194/niladri-basu-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

213 8,544 47 87 g-index

223 10,691 5.9 6.19 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
213	Occupational exposures to particulate matter and PM-associated polycyclic aromatic hydrocarbons at the Agbogbloshie waste recycling site in Ghana <i>Environment International</i> , 2022 , 158, 106971	12.9	1
212	Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas) <i>Science of the Total Environment</i> , 2022 , 817, 152747	10.2	1
211	The performance of dried blood spots for the assessment of lead exposure: A narrative review with a systematic search. <i>Microchemical Journal</i> , 2022 , 172, 106930	4.8	1
21 0	Innovation in regulatory approaches for endocrine disrupting chemicals: The journey to risk assessment modernization in Canada. <i>Environmental Research</i> , 2022 , 204, 112225	7.9	4
209	The impact of mercury contamination on human health in the Arctic: A state of the science review <i>Science of the Total Environment</i> , 2022 , 154793	10.2	2
208	Toxicological risk of mercury for fish and invertebrate prey in the Arctic <i>Science of the Total Environment</i> , 2022 , 836, 155702	10.2	4
207	Consideration of metabolomics and transcriptomics data in the context of using avian embryos for toxicity testing <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2022 , 109370	3.2	O
206	Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation <i>NanoImpact</i> , 2021 , 24, 100369	5.6	1
205	Personal exposure to particulate matter and heart rate variability among informal electronic waste workers at Agbogbloshie: a longitudinal study. <i>BMC Public Health</i> , 2021 , 21, 2161	4.1	1
204	EcoToxXplorer: Leveraging Design Thinking to Develop a Standardized Web-Based Transcriptomics Analytics Platform for Diverse Users. <i>Environmental Toxicology and Chemistry</i> , 2021 ,	3.8	1
203	Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine <i>Environmental Pollution</i> , 2021 , 295, 118667	9.3	1
202	Spatial Distribution of Heavy Metals and Pollution of Environmental Media Around a Used Lead-acid Battery Recycling Center in Ibadan, Nigeria. <i>Journal of Health and Pollution</i> , 2021 , 11, 210304	2.6	O
201	Development of a Comprehensive Toxicity Pathway Model for 17 Ethinylestradiol in Early Life Stage Fathead Minnows (). <i>Environmental Science & Eamp; Technology</i> , 2021 , 55, 5024-5036	10.3	8
200	Ultrafast functional profiling of RNA-seq data for nonmodel organisms. <i>Genome Research</i> , 2021 , 31, 713	3- 3 . 3 0	2
199	Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish (). <i>Nanotoxicology</i> , 2021 , 15, 527-541	5.3	1
198	Mercury and neurochemical biomarkers in multiple brain regions of five Arctic marine mammals. <i>NeuroToxicology</i> , 2021 , 84, 136-145	4.4	1
197	Global DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. <i>International Archives of Occupational and Environmental Health</i> , 2021 , 94, 1931-1944	3.2	2

1	196	Assessing the Toxicity of 17 Ethinylestradiol in Rainbow Trout Using a 4-Day Transcriptomics Benchmark Dose (BMD) Embryo Assay. <i>Environmental Science & Environmental Science</i>	10.3	5	
1	195	Methylmercury Measurements in Dried Blood Spots from Electronic Waste Workers Sampled from Agbogbloshie, Ghana. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2183-2188	3.8	0	
1	194	Effects on Apical Outcomes of Regulatory Relevance of Early-Life Stage Exposure of Double-Crested Cormorant Embryos to 4 Environmental Chemicals. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 390-401	3.8	3	
1	193	FastBMD: an online tool for rapid benchmark dose-response analysis of transcriptomics data. <i>Bioinformatics</i> , 2021 , 37, 1035-1036	7.2	7	
1	192	Lead (Pb) exposure assessment in dried blood spots using Total Reflection X-Ray Fluorescence (TXRF). <i>Environmental Research</i> , 2021 , 198, 110444	7.9	7	
1	191	Dried blood spots to characterize mercury speciation and exposure in a Colombian artisanal and small-scale gold mining community. <i>Chemosphere</i> , 2021 , 266, 129001	8.4	5	
1	190	Work-Related Exposures and Musculoskeletal Disorder Symptoms among Informal E-Waste Recyclers at Agbogbloshie, Ghana. <i>Lecture Notes in Networks and Systems</i> , 2021 , 222, 677-681	0.5		
1	189	Musculoskeletal Disorder Symptoms among Workers at an Informal Electronic-Waste Recycling Site in Agbogbloshie, Ghana. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	3	
1	ι88	Environmental Heavy Metal Contamination from Electronic Waste (E-Waste) Recycling Activities Worldwide: A Systematic Review from 2005 to 2017. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	8	
1	18 7	Envisioning an international validation process for New Approach Methodologies in chemical hazard and risk assessment. <i>Environmental Advances</i> , 2021 , 4, 100061	3.5	1	
1	186	Sex- and Developmental Stage-Related Differences in the Hepatic Transcriptome of Japanese Quail (Coturnix japonica) Exposed to 17ETrenbolone. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2559-	2 3 570	1	
1	185	International Consortium to Advance Cross-Species Extrapolation of the Effects of Chemicals in Regulatory Toxicology. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 3226-3233	3.8	2	
1	184	Variation in biomarker levels of metals, persistent organic pollutants, and omega-3 fatty acids in association with genetic polymorphisms among Inuit in Nunavik, Canada. <i>Environmental Research</i> , 2021 , 200, 111393	7.9	3	
1	183	Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Double-Crested Cormorant Embryos. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 3019-3033	3.8	Ο	
1	182	Geolocators link marine mercury with levels in wild seabirds throughout their annual cycle: Consequences for trans-ecosystem biotransport. <i>Environmental Pollution</i> , 2021 , 284, 117035	9.3	1	
1	181	Comparison and Agreement of Toxic and Essential Elements Between Venous and Capillary Whole Blood. <i>Biological Trace Element Research</i> , 2021 , 1	4.5	1	
1	ι8ο	Biomonitoring of metals in blood and urine of electronic waste (E-waste) recyclers at Agbogbloshie, Ghana. <i>Chemosphere</i> , 2021 , 280, 130677	8.4	1	
1	179	Registration status, mercury exposure biomarkers, and neuropsychological assessment of artisanal and small-scale gold miners (ASGM) from the Western Region of Ghana. <i>Environmental Research</i> , 2021 , 201, 111639	7.9	1	

178	Mercury exposure in relation to sleep duration, timing, and fragmentation among adolescents in Mexico City. <i>Environmental Research</i> , 2020 , 191, 110216	7.9	2	
177	Drivers of and Obstacles to the Adoption of Toxicogenomics for Chemical Risk Assessment: Insights from Social Science Perspectives. <i>Environmental Health Perspectives</i> , 2020 , 128, 105002	8.4	6	
176	Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	20	
175	Exploring the Impacts of Methylmercury-Induced Behavioral Alterations in Larval Yellow Perch in Lake Michigan Using an Individual-Based Model. <i>Transactions of the American Fisheries Society</i> , 2020 , 149, 664-680	1.7	O	
174	Factors Affecting the Perception of New Approach Methodologies (NAMs) in the Ecotoxicology Community. <i>Integrated Environmental Assessment and Management</i> , 2020 , 16, 269-281	2.5	3	
173	EcoToxModules: Custom Gene Sets to Organize and Analyze Toxicogenomics Data from Ecological Species. <i>Environmental Science & Environmental Science & </i>	10.3	5	
172	Dried Blood Spot Sampling of Landlocked Arctic Char (Salvelinus alpinus) for Estimating Mercury Exposure and Stable Carbon Isotope Fingerprinting of Essential Amino Acids. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 893-903	3.8	2	
171	Mercury Speciation in Whole Blood and Dried Blood Spots from Capillary and Venous Sources. <i>Analytical Chemistry</i> , 2020 , 92, 3605-3612	7.8	16	
170	Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta, Canada. <i>Chemosphere</i> , 2020 , 250, 1262	28 ⁸ 5 ⁴	13	
169	Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	2	
168	An Early-Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 141-154	3.8	8	
167	A State-of-the-Art Review of Indigenous Peoples and Environmental Pollution. <i>Integrated Environmental Assessment and Management</i> , 2020 , 16, 324-341	2.5	27	
166	Alternatives assessment of perovskite solar cell materials and their methods of fabrication. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 133, 110207	16.2	9	
165	Micronutrient-rich dietary intake is associated with a reduction in the effects of particulate matter on blood pressure among electronic waste recyclers at Agbogbloshie, Ghana. <i>BMC Public Health</i> , 2020 , 20, 1067	4.1	6	
164	Effects of Non-native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 2196-2207	3.8	2	
163	In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among boys in Mexico City. <i>Environmental Health</i> , 2020 , 19, 124	6	3	
162	Continuous exposure to mercury during embryogenesis and chick development affects later survival and reproduction of zebra finch (Taeniopygia guttata). <i>Ecotoxicology</i> , 2020 , 29, 1117-1127	2.9	5	
161	Relationship Between Methylmercury Contamination and Proportion of Aquatic and Terrestrial Prey in Diets of Shoreline Spiders. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 2503-2508	3.8	11	

(2018-2019)

160	In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. <i>Environmental Research</i> , 2019 , 177, 108630	7.9	25
159	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. <i>Science of the Total Environment</i> , 2019 , 696, 133792	10.2	103
158	EcoToxChip: A next-generation toxicogenomics tool for chemical prioritization and environmental management. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 279-288	3.8	26
157	Occurrence and bioaccessibility of mercury in commercial rice samples in Montreal (Canada). <i>Food and Chemical Toxicology</i> , 2019 , 126, 72-78	4.7	13
156	Fluoride exposure and pubertal development in children living in Mexico City. <i>Environmental Health</i> , 2019 , 18, 26	6	12
155	NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. <i>Nucleic Acids Research</i> , 2019 , 47, W234-W241	20.1	491
154	Screening-level risk assessment of methylmercury for non-anadromous Arctic char (Salvelinus alpinus). <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 489-502	3.8	8
153	A comparative study of 3 alternative avian toxicity testing methods: Effects on hepatic gene expression in the chicken embryo. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 2546-2555	3.8	4
152	Derivation of Time-Activity Data Using Wearable Cameras and Measures of Personal Inhalation Exposure among Workers at an Informal Electronic-Waste Recovery Site in Ghana. <i>Annals of Work Exposures and Health</i> , 2019 , 63, 829-841	2.4	18
151	Improving and Expanding Estimates of the Global Burden of Disease Due to Environmental Health Risk Factors. <i>Environmental Health Perspectives</i> , 2019 , 127, 105001	8.4	42
150	T1000: a reduced gene set prioritized for toxicogenomic studies. <i>PeerJ</i> , 2019 , 7, e7975	3.1	8
149	The challenge of pollution and health in Canada. Canadian Journal of Public Health, 2019, 110, 159-164	3.2	2
148	Transdisciplinary and social-ecological health frameworks-Novel approaches to emerging parasitic and vector-borne diseases. <i>Parasite Epidemiology and Control</i> , 2019 , 4, e00084	2.6	22
147	Genetic polymorphisms are associated with exposure biomarkers for metals and persistent organic pollutants among Inuit from the Inuvialuit Settlement Region, Canada. <i>Science of the Total Environment</i> , 2018 , 634, 569-578	10.2	4
146	Modulators of mercury risk to wildlife and humans in the context of rapid global change. <i>Ambio</i> , 2018 , 47, 170-197	6.5	168
145	Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio). <i>Chemosphere</i> , 2018 , 195, 301-311	8.4	5
144	Mercury associated neurochemical response in Arctic barnacle goslings (Branta leucopsis). <i>Science of the Total Environment</i> , 2018 , 624, 1052-1058	10.2	7
143	Ecologically-relevant exposure to methylmercury during early development does not affect adult phenotype in zebra finches (Taeniopygia guttata). <i>Ecotoxicology</i> , 2018 , 27, 259-266	2.9	5

142	Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. <i>International Journal of Hygiene and Environmental Health</i> , 2018 , 221, 609-615	6.9	25
141	Dried blood spots for estimating mercury exposure in birds. <i>Environmental Pollution</i> , 2018 , 236, 236-24	6 9.3	15
140	The Lancet Commission on pollution and health. <i>Lancet, The</i> , 2018 , 391, 462-512	40	1639
139	Prevention-intervention strategies to reduce exposure to e-waste. <i>Reviews on Environmental Health</i> , 2018 , 33, 219-228	3.8	23
138	Trapped river otters (Lontra canadensis) from central Saskatchewan differ in total and organic mercury concentrations by sex and geographic location. <i>Facets</i> , 2018 , 3, 139-154	2.3	5
137	Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp and Paper Mill Effluents to Adverse Reproductive Outcomes in Fish 2018 , 317-347		1
136	Cell-Free Assays in Environmental Toxicology 2018 , 31-41		1
135	The Minamata Convention on Mercury and the role for the environmental sciences community. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2951-2952	3.8	5
134	A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. <i>Environmental Health Perspectives</i> , 2018 , 126, 106001	8.4	91
133	Prenatal fluoride exposure and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6-12 years of age in Mexico City. <i>Environment International</i> , 2018 , 121, 658-666	12.9	45
132	Subcellular distributions of trace elements (Cd, Pb, As, Hg, Se) in the livers of Alaskan yelloweye rockfish (Sebastes ruberrimus). <i>Environmental Pollution</i> , 2018 , 242, 63-72	9.3	12
131	National estimation of seafood consumption in Mexico: Implications for exposure to methylmercury and polyunsaturated fatty acids. <i>Chemosphere</i> , 2017 , 174, 289-296	8.4	14
130	A cell-free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 3081-3090	3.8	7
129	A comparison of licensed and un-licensed artisanal and small-scale gold miners (ASGM) in terms of socio-demographics, work profiles, and injury rates. <i>BMC Public Health</i> , 2017 , 17, 862	4.1	10
128	Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6-12 Years of Age in Mexico. <i>Environmental Health Perspectives</i> , 2017 , 125, 097017	8.4	94
127	Development and application of a novel method to characterize methylmercury exposure in newborns using dried blood spots. <i>Environmental Research</i> , 2017 , 159, 276-282	7.9	16
126	Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch () Larvae. <i>ACS Omega</i> , 2017 , 2, 4870-4877	3.9	9
125	Mercury speciation and subcellular distribution in experimentally dosed and wild birds. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 3289-3298	3.8	4

(2016-2017)

124	Pulmonary function and respiratory health of rural farmers and artisanal and small scale gold miners in Ghana. <i>Environmental Research</i> , 2017 , 158, 522-530	7.9	5
123	Structured identification of response options to address environmental health risks at the Agbogbloshie electronic waste site. <i>Integrated Environmental Assessment and Management</i> , 2017 , 13, 980-991	2.5	4
122	Dietary predictors of urinary cadmium among pregnant women and children. <i>Science of the Total Environment</i> , 2017 , 575, 1255-1262	10.2	27
121	Current progress on understanding the impact of mercury on human health. <i>Environmental Research</i> , 2017 , 152, 419-433	7.9	207
120	Cadmium exposure and age-associated DNA methylation changes in non-smoking women from northern Thailand. <i>Environmental Epigenetics</i> , 2017 , 3, dvx006	2.4	10
119	A Review of Mercury Bioavailability in Humans and Fish. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	106
118	Exposures of dental professionals to elemental mercury and methylmercury. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2016 , 26, 78-85	6.7	28
117	Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. <i>Chemosphere</i> , 2016 , 164, 68-74	8.4	69
116	Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps. <i>Science of the Total Environment</i> , 2016 , 569-570, 888-903	10.2	69
115	An Ecological and Human Biomonitoring Investigation of Mercury Contamination at the Aamjiwnaang First Nation. <i>EcoHealth</i> , 2016 , 13, 784-795	3.1	7
114	Acute embryotoxic effects but no long-term reproductive effects of in ovo methylmercury exposure in zebra finches (Taeniopygia guttata). <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 153-	4 ³ 40	13
113	In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern. <i>Environmental Pollution</i> , 2016 , 211, 9-19	9.3	7
112	Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment. <i>Chemosphere</i> , 2016 , 144, 1582-8	8.4	8
111	Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 2767-70	10.3	52
110	Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. <i>Environmental Research</i> , 2016 , 149, 247-258	7.9	22
109	Detectable Blood Lead Level and Body Size in Early Childhood. <i>Biological Trace Element Research</i> , 2016 , 171, 41-7	4.5	16
108	Childhood Blood Lead Levels and Symptoms of Attention Deficit Hyperactivity Disorder (ADHD): A Cross-Sectional Study of Mexican Children. <i>Environmental Health Perspectives</i> , 2016 , 124, 868-74	8.4	54
107	Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. <i>Environmental Research</i> , 2016 , 149, 266-273	7.9	25

106	Parental Whole Life Cycle Exposure to Dietary Methylmercury in Zebrafish (Danio rerio) Affects the Behavior of Offspring. <i>Environmental Science & Environmental Science & Env</i>	10.3	27
105	DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. <i>Chemosphere</i> , 2016 , 145, 284-90	8.4	40
104	Neuroendocrine biochemical effects in methylmercury-exposed yellow perch. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2016 , 187, 10-8	3.2	5
103	Occupational and Environmental Health Risks Associated with Informal Sector Activities-Selected Case Studies from West Africa. <i>New Solutions</i> , 2016 , 26, 253-70	1	13
102	Assessment of fish consumption and mercury exposure among pregnant women in Jamaica and Trinidad & Tobago. <i>Chemosphere</i> , 2016 , 164, 462-468	8.4	10
101	Comparison of Three Analytical Methods for the Quantitation of Mercury in Environmental Samples from the Volta Lake, Ghana. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2016 , 97, 677-683	2.7	5
100	One health-Transdisciplinary opportunities for SETAC leadership in integrating and improving the health of people, animals, and the environment. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2383-	³ 2891	13
99	Urinary and plasma fluoride levels in pregnant women from Mexico City. <i>Environmental Research</i> , 2016 , 150, 489-495	7.9	14
98	The antidepressant venlafaxine may act as a neurodevelopmental toxicant in cuttlefish (Sepia officinalis). <i>NeuroToxicology</i> , 2016 , 55, 142-153	4.4	21
97	Hepatic polybrominated diphenyl ether (PBDE) levels in Wisconsin river otters () and Michigan bald eagles (). <i>Journal of Great Lakes Research</i> , 2015 , 41, 222-227	3	11
96	Investigating endocrine and physiological parameters of captive American kestrels exposed by diet to selected organophosphate flame retardants. <i>Environmental Science & Environmental Science & Envir</i>	193 -55	51
95	In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens. <i>Neurotoxicology and Teratology</i> , 2015 , 52, 228-35	3.9	6
94	Applications and implications of neurochemical biomarkers in environmental toxicology. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 22-9	3.8	28
93	Health seeking behaviours among electronic waste workers in Ghana. <i>BMC Public Health</i> , 2015 , 15, 1065	4.1	40
92	Mercury Exposure and Antinuclear Antibodies among Females of Reproductive Age in the United States: NHANES. <i>Environmental Health Perspectives</i> , 2015 , 123, 792-8	8.4	50
91	Integrated assessment of artisanal and small-scale gold mining in Ghanapart 1: human health review. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 5143-76	4.6	81
90	Injury Profiles Associated with Artisanal and Small-Scale Gold Mining in Tarkwa, Ghana. International Journal of Environmental Research and Public Health, 2015, 12, 7922-37	4.6	31
89	Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana-Part 2: Natural Sciences Review. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 8971-9011	4.6	55

(2013-2015)

88	An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 10020-38	4.6	24
87	Mercury Exposure Assessment and Spatial Distribution in A Ghanaian Small-Scale Gold Mining Community. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 10755-82	4.6	43
86	Identification of Response Options to Artisanal and Small-Scale Gold Mining (ASGM) in Ghana via the Delphi Process. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 11345-	6 3 .6	11
85	An Integrated Assessment Approach to Address Artisanal and Small-Scale Gold Mining in Ghana. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 11683-98	4.6	15
84	Understanding the Social Context of the ASGM Sector in Ghana: A Qualitative Description of the Demographic, Health, and Nutritional Characteristics of a Small-Scale Gold Mining Community in Ghana. International Journal of Environmental Research and Public Health, 2015 , 12, 12679-96	4.6	17
83	Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus). <i>Environmental Research</i> , 2015 , 138, 22-31	7.9	50
82	Elevated prenatal methylmercury exposure in Nigeria: evidence from maternal and cord blood. <i>Chemosphere</i> , 2015 , 119, 485-489	8.4	18
81	Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes. <i>Environmental Research</i> , 2015 , 137, 226-34	7.9	37
8o	Molecular and neurochemical biomarkers in Arctic beluga whales (Delphinapterus leucas) were correlated to brain mercury and selenium concentrations. <i>Environmental Science & Environmental Science & </i>	10.3	12
79	Mercury levels in pregnant women, children, and seafood from Mexico City. <i>Environmental Research</i> , 2014 , 135, 63-9	7.9	49
78	Hydraulic "fracking": are surface water impacts an ecological concern?. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1679-89	3.8	57
77	Historic and Contemporary Mercury Exposure and Potential Risk to Yellow-Billed Loons (Gavia adamsii) Breeding in Alaska and Canada. <i>Waterbirds</i> , 2014 , 37, 147-159	0.5	21
76	Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1248-58	3.8	63
<i>75</i>	Application of the LUminometric Methylation Assay to ecological species: tissue quality requirements and a survey of DNA methylation levels in animals. <i>Molecular Ecology Resources</i> , 2014 , 14, 943-52	8.4	22
74	What are the toxicological effects of mercury in Arctic biota?. <i>Science of the Total Environment</i> , 2013 , 443, 775-90	10.2	238
73	Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis). <i>Ecotoxicology</i> , 2013 , 22, 469-75	2.9	20
72	Mercury biomarkers and DNA methylation among Michigan dental professionals. <i>Environmental and Molecular Mutagenesis</i> , 2013 , 54, 195-203	3.2	73
71	Methylmercury egg injections: part 1Tissue distribution of mercury in the avian embryo and hatchling. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 93, 68-76	7	18

70	Associations of blood and urinary mercury with hypertension in U.S. adults: the NHANES 2003-2006. <i>Environmental Research</i> , 2013 , 123, 25-32	7.9	41
69	Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals. <i>International Journal of Hygiene and Environmental Health</i> , 2013 , 216, 195-201	6.9	32
68	Relationship of estimated dietary intake of n-3 polyunsaturated fatty acids from fish with peripheral nerve function after adjusting for mercury exposure. <i>Science of the Total Environment</i> , 2013 , 454-455, 73-8	10.2	О
67	Effects of methylmercury on epigenetic markers in three model species: mink, chicken and yellow perch. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2013 , 157, 322-7	3.2	23
66	Methylmercury egg injections: part 2pathology, neurochemistry, and behavior in the avian embryo and hatchling. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 93, 77-86	7	13
65	New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. <i>Environmental Science & Environmental & Environmenta</i>	10.3	94
64	Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). <i>Ecotoxicology</i> , 2013 , 22, 740-51	2.9	18
63	Organometal(loid)s. Fish Physiology, 2013 , 33, 141-194	2	1
62	Water Values in a Ghanaian Small-Scale Gold Mining Community. Human Organization, 2013, 72, 199-21	01.2	13
61	Extracts from hardwood trees used in commercial paper mills contain biologically active neurochemical disruptors. <i>Science of the Total Environment</i> , 2012 , 414, 205-9	10.2	6
60	An investigation of modifying effects of single nucleotide polymorphisms in metabolism-related genes on the relationship between peripheral nerve function and mercury levels in urine and hair. <i>Science of the Total Environment</i> , 2012 , 417-418, 32-8	10.2	14
59	Epigenetics for ecotoxicologists. Environmental Toxicology and Chemistry, 2012, 31, 221-7	3.8	60
58	Multiple metals exposure and neurotoxic risk in bald eagles (Haliaeetus leucocephalus) from two Great Lakes states. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 623-31	3.8	11
57	Postmortem stability of brain GABAergic and glutamatergic receptors and enzymes under ecological conditions. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 84, 133-8	7	6
56	Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. <i>Toxicology in Vitro</i> , 2012 , 26, 630-5	3.6	48
55	Piscivorous Mammalian Wildlife as Sentinels of Methylmercury Exposure and Neurotoxicity in Humans 2012 , 357-370		10
54	Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (Gavia immer): rationale for use in ecological risk assessment. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2399-407	3.8	54
53	Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	90

(2010-2012)

52	An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. <i>Environmental Health Perspectives</i> , 2012 , 120, 530-4	8.4	46
51	Two decades of biomonitoring polar bear health in Greenland: a review. <i>Acta Veterinaria Scandinavica</i> , 2012 , 54,	2	60
50	Agreement between clinical screening procedures for neuropathy in the feet. <i>Muscle and Nerve</i> , 2012 , 45, 653-8	3.4	5
49	Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1536-47	3.8	116
48	Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. <i>Ecotoxicology</i> , 2012 , 21, 1094-101	2.9	46
47	Ecotoxicology of Mercury in Fish and Wildlife: Recent Advances 2012 , 223-238		15
46	Multiple metals exposure in a small-scale artisanal gold mining community. <i>Environmental Research</i> , 2011 , 111, 463-7	7.9	36
45	Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. <i>Toxicology and Applied Pharmacology</i> , 2011 , 257, 301-8	4.6	58
44	Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states. <i>Ecotoxicology</i> , 2011 , 20, 1669-76	2.9	52
43	Retrospective analysis of mercury content in feathers of birds collected from the state of Michigan (1895-2007). <i>Ecotoxicology</i> , 2011 , 20, 1636-43	2.9	17
42	Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada. <i>Ecotoxicology</i> , 2011 , 20, 1677-83	2.9	12
41	Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and policy. <i>Ecotoxicology</i> , 2011 , 20, 1487-99	2.9	39
40	Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. <i>Environmental Monitoring and Assessment</i> , 2011 , 176, 549-59	3.1	32
39	Rapid methods to detect organic mercury and total selenium in biological samples. <i>Chemistry Central Journal</i> , 2011 , 5, 3		27
38	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 9-21	3.8	52
37	Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. <i>Environmental Science & Description (Ursus maritimus)</i> hair. <i>Environmental Science & Description (Ursus maritimus)</i>	10.3	74
36	Mercury and selenium content of Taiwanese seafood. <i>Food Additives and Contaminants: Part B Surveillance</i> , 2011 , 4, 212-7	3.3	12
35	Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. <i>Molecular Ecology</i> , 2010 , 19, 307-14	5.7	100

34	Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure. <i>Aquatic Toxicology</i> , 2010 , 99, 351-9	5.1	20
33	Environmental and occupational exposures to mercury among indigenous people in Dunkwa-On-Offin, a small scale gold mining area in the South-West of Ghana. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2010 , 85, 476-80	2.7	30
32	Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 181-6	5.1	8
31	Variation of cholinergic biomarkers in brain regions and blood components of captive mink. <i>Environmental Monitoring and Assessment</i> , 2010 , 162, 377-86	3.1	
30	Mammalian wildlife as complementary models in environmental neurotoxicology. <i>Neurotoxicology and Teratology</i> , 2010 , 32, 114-9	3.9	33
29	Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. <i>Science of the Total Environment</i> , 2010 , 408, 5808-16	10.2	73
28	Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana's Upper East region. <i>Science of the Total Environment</i> , 2010 , 408, 607	9 -185 2	75
27	A combined ecological and epidemiologic investigation of metal exposures amongst Indigenous peoples near the Marlin Mine in Western Guatemala. <i>Science of the Total Environment</i> , 2010 , 409, 70-7	10.2	23
26	Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes. <i>Environmental Pollution</i> , 2010 , 158, 2733-7	9.3	15
25	Chronic exposure to fluoxetine (Prozac) causes developmental delays in Rana pipiens larvae. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2845-50	3.8	48
24	In vitro and whole animal evidence that methylmercury disrupts GABAergic systems in discrete brain regions in captive mink. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2010 , 151, 379-85	3.2	27
23	Is dietary mercury of neurotoxicological concern to wild polar bears (Ursus maritimus)?. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 133-40	3.8	138
22	Pulp and paper mill effluents contain neuroactive substances that potentially disrupt neuroendocrine control of fish reproduction. <i>Environmental Science & Environmental Scie</i>	11 ^{0.3}	41
21	The mink is still a reliable sentinel species in environmental health. <i>Environmental Research</i> , 2009 , 109, 940-941	7.9	3
20	Characterization of Ambient Air Particulates and Particulate Mercury at Sha-Lu, Central Taiwan. <i>Environmental Forensics</i> , 2009 , 10, 277-285	1.6	28
19	The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. <i>NeuroToxicology</i> , 2008 , 29, 328-34	4.4	22
18	Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). <i>Ecotoxicology</i> , 2008 , 17, 93-101	2.9	124
17	Dietary and in utero exposure to a pentabrominated diphenyl ether mixture did not affect cholinergic parameters in the cerebral cortex of ranch mink (Mustela vison). <i>Toxicological Sciences</i> , 2007 , 96, 115-22	4.4	16

LIST OF PUBLICATIONS

16	Roundtable Discussion Groups Summary Papers: New Bioindicators for Mercury Toxicological Assessment: Recommendations from the First International Bioindicators Roundtable. <i>Environmental Bioindicators</i> , 2007 , 2, 183-207		3
15	Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. <i>Human and Experimental Toxicology</i> , 2007 , 26, 213-20	3.4	34
14	Polychlorinated biphenyls, organochlorinated pesticides, and polybrominated diphenyl ethers in the cerebral cortex of wild river otters (Lontra canadensis). <i>Environmental Pollution</i> , 2007 , 149, 25-30	9.3	23
13	Mink as a sentinel species in environmental health. <i>Environmental Research</i> , 2007 , 103, 130-44	7.9	142
12	Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. <i>NeuroToxicology</i> , 2007 , 28, 587-93	4.4	74
11	Mercury but not organochlorines inhibits muscarinic cholinergic receptor binding in the cerebrum of ringed seals (Phoca hispida). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2006 , 69, 1133-43	3.2	42
10	Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). <i>Toxicological Sciences</i> , 2006 , 91, 202-9	4.4	68
9	Effects of mercury on neurochemical receptors in wild river otters (Lontra canadensis). <i>Environmental Science & Documental Science & D</i>	10.3	97
8	Effects of mercury on neurochemical receptor-binding characteristics in wild mink. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1444-50	3.8	65
7	An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum. <i>Toxicology and Applied Pharmacology</i> , 2005 , 205, 71-6	4.6	55
6	Biochemical markers of neurotoxicity in wildlife and human populations: considerations for method development. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2005 , 68, 1413-29	3.2	28
5	Sex-related differences in the organismal and cellular stress response in juvenile salmon exposed to treated bleached kraft mill effluent. <i>Fish Physiology and Biochemistry</i> , 2003 , 29, 173-179	2.7	33
4	Heat shock protein genes and their functional significance in fish. <i>Gene</i> , 2002 , 295, 173-83	3.8	441
3	The effects of cortisol on heat shock protein 70 levels in two fish species. <i>General and Comparative Endocrinology</i> , 2001 , 124, 97-105	3	139
2	Altered stress responses in rainbow trout following a dietary administration of cortisol and Ehapthoflavone. <i>Fish Physiology and Biochemistry</i> , 2001 , 25, 131-140	2.7	21
1	Analysis of copper, selenium, and zinc in newborn dried bloodspots using total reflection X-ray fluorescence (TXRF) spectroscopy1, e1		2