List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3686194/publications.pdf Version: 2024-02-01

		34016	30010
222	12,587	52	103
papers	citations	h-index	g-index
222	222	222	1 40 40
223	223	223	14849
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Lancet Commission on pollution and health. Lancet, The, 2018, 391, 462-512.	6.3	2,747
2	NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 2019, 47, W234-W241.	6.5	1,191
3	Heat shock protein genes and their functional significance in fish. Gene, 2002, 295, 173-183.	1.0	520
4	Current progress on understanding the impact of mercury on human health. Environmental Research, 2017, 152, 419-433.	3.7	305
5	What are the toxicological effects of mercury in Arctic biota?. Science of the Total Environment, 2013, 443, 775-790.	3.9	287
6	Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 2018, 47, 170-197.	2.8	244
7	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment, 2019, 696, 133792.	3.9	184
8	Mink as a sentinel species in environmental health. Environmental Research, 2007, 103, 130-144.	3.7	167
9	The Effects of Cortisol on Heat Shock Protein 70 Levels in Two Fish Species. General and Comparative Endocrinology, 2001, 124, 97-105.	0.8	164
10	A Review of Mercury Bioavailability in Humans and Fish. International Journal of Environmental Research and Public Health, 2017, 14, 169.	1.2	155
11	Is dietary mercury of neurotoxicological concern to wild polar bears (<i>Ursus maritimus</i>)?. Environmental Toxicology and Chemistry, 2009, 28, 133-140.	2.2	151
12	A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environmental Health Perspectives, 2018, 126, 106001.	2.8	145
13	Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6–12 Years of Age in Mexico. Environmental Health Perspectives, 2017, 125, 097017.	2.8	144
14	Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia) Tj ETQq0 0 (0 rgBT /Ove	rlock 10 Tf 50
15	Toxicity of dietary methylmercury to fish: Derivation of ecologically meaningful threshold concentrations. Environmental Toxicology and Chemistry, 2012, 31, 1536-1547.	2.2	141
16	Absence of Fractionation of Mercury Isotopes during Trophic Transfer of Methylmercury to Freshwater Fish in Captivity. Environmental Science & Technology, 2012, 46, 7527-7534.	4.6	121

17	New Insight into Biomarkers of Human Mercury Exposure Using Naturally Occurring Mercury Stable Isotopes. Environmental Science & Technology, 2013, 47, 3403-3409.	4.6	118
18	Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 1: Human Health Review. International Journal of Environmental Research and Public Health, 2015, 12, 5143-5176.	1.2	115

-

#	Article	IF	CITATIONS
19	Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Molecular Ecology, 2010, 19, 307-314.	2.0	110
20	Effects of Mercury on Neurochemical Receptors in Wild River Otters (Lontra canadensis). Environmental Science & Technology, 2005, 39, 3585-3591.	4.6	104
21	Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere, 2016, 164, 68-74.	4.2	102
22	Evaluating the effectiveness of the Minamata Convention on Mercury: Principles and recommendations for next steps. Science of the Total Environment, 2016, 569-570, 888-903.	3.9	101
23	Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. International Journal of Environmental Research and Public Health, 2015, 12, 8971-9011.	1.2	87
24	Occupational and environmental mercury exposure among small-scale gold miners in the Talensi–Nabdam District of Ghana's Upper East region. Science of the Total Environment, 2010, 408, 6079-6085.	3.9	86
25	Temporal Trends and Future Predictions of Mercury Concentrations in Northwest Greenland Polar Bear (<i>Ursus maritimus</i>) Hair. Environmental Science & Technology, 2011, 45, 1458-1465.	4.6	85
26	Mercury biomarkers and DNA methylation among michigan dental professionals. Environmental and Molecular Mutagenesis, 2013, 54, 195-203.	0.9	83
27	Mercury contamination in spotted seatrout, Cynoscion nebulosus: An assessment of liver, kidney, blood, and nervous system health. Science of the Total Environment, 2010, 408, 5808-5816.	3.9	82
28	Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decisionâ€making. Environmental Toxicology and Chemistry, 2014, 33, 1248-1258.	2.2	81
29	Hydraulic "Fracking― Are surface water impacts an ecological concern?. Environmental Toxicology and Chemistry, 2014, 33, 1679-1689.	2.2	80
30	Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker Responses in east Greenland polar Bears (Ursus maritimus). Environmental Research, 2015, 138, 22-31.	3.7	78
31	Decreased N-methyl-d-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. NeuroToxicology, 2007, 28, 587-593.	1.4	77
32	Methylmercury Impairs Components of the Cholinergic System in Captive Mink (Mustela vison). Toxicological Sciences, 2006, 91, 202-209.	1.4	75
33	Prenatal fluoride exposure and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6–12†years of age in Mexico City. Environment International, 2018, 121, 658-666.	4.8	73
34	Improving and Expanding Estimates of the Global Burden of Disease Due to Environmental Health Risk Factors. Environmental Health Perspectives, 2019, 127, 105001.	2.8	73
35	Childhood Blood Lead Levels and Symptoms of Attention Deficit Hyperactivity Disorder (ADHD): A Cross-Sectional Study of Mexican Children. Environmental Health Perspectives, 2016, 124, 868-874.	2.8	72
36	EFFECTS OF MERCURY ON NEUROCHEMICAL RECEPTOR-BINDING CHARACTERISTICS IN WILD MINK. Environmental Toxicology and Chemistry, 2005, 24, 1444.	2.2	71

#	Article	IF	CITATIONS
37	Epigenetics for ecotoxicologists. Environmental Toxicology and Chemistry, 2012, 31, 221-227.	2.2	70
38	Two decades of biomonitoring polar bear health in Greenland: a review. Acta Veterinaria Scandinavica, 2012, 54, .	0.5	68
39	Importance of Integration and Implementation of Emerging and Future Mercury Research into the Minamata Convention. Environmental Science & Technology, 2016, 50, 2767-2770.	4.6	68
40	Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and Applied Pharmacology, 2011, 257, 301-308.	1.3	63
41	An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum. Toxicology and Applied Pharmacology, 2005, 205, 71-76.	1.3	62
42	Mercury exposure and neurochemical impacts in bald eagles across several Great Lakes states. Ecotoxicology, 2011, 20, 1669-1676.	1.1	61
43	Investigating Endocrine and Physiological Parameters of Captive American Kestrels Exposed by Diet to Selected Organophosphate Flame Retardants. Environmental Science & Technology, 2015, 49, 7448-7455.	4.6	60
44	Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (<i>Gavia immer</i>): Rationale for use in ecological risk assessment. Environmental Toxicology and Chemistry, 2012, 31, 2399-2407.	2.2	59
45	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environmental Toxicology and Chemistry, 2011, 30, 9-21.	2.2	58
46	A Stateâ€ofâ€ŧheâ€Art Review of Indigenous Peoples and Environmental Pollution. Integrated Environmental Assessment and Management, 2020, 16, 324-341.	1.6	58
47	Chronic exposure to fluoxetine (Prozac) causes developmental delays in <i>Rana pipiens</i> larvae. Environmental Toxicology and Chemistry, 2010, 29, 2845-2850.	2.2	57
48	Mercury levels in pregnant women, children, and seafood from Mexico City. Environmental Research, 2014, 135, 63-69.	3.7	57
49	Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology, 2012, 21, 1094-1101.	1.1	56
50	Mercury Exposure and Antinuclear Antibodies among Females of Reproductive Age in the United States: NHANES. Environmental Health Perspectives, 2015, 123, 792-798.	2.8	56
51	An Investigation of Modifying Effects of Metallothionein Single-Nucleotide Polymorphisms on the Association between Mercury Exposure and Biomarker Levels. Environmental Health Perspectives, 2012, 120, 530-534.	2.8	55
52	Mercury Exposure Assessment and Spatial Distribution in A Ghanaian Small-Scale Gold Mining Community. International Journal of Environmental Research and Public Health, 2015, 12, 10755-10782.	1.2	54
53	Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. Toxicology in Vitro, 2012, 26, 630-635.	1.1	52
54	Health seeking behaviours among electronic waste workers in Ghana. BMC Public Health, 2015, 15, 1065.	1.2	52

#	Article	IF	CITATIONS
55	Mercury but not Organochlorines Inhibits Muscarinic Cholinergic Receptor Binding in the Cerebrum of Ringed Seals (Phoca hispida). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2006, 69, 1133-1143.	1.1	49
56	Associations of blood and urinary mercury with hypertension in U.S. Adults: The NHANES 2003–2006. Environmental Research, 2013, 123, 25-32.	3.7	49
57	DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere, 2016, 145, 284-290.	4.2	48
58	In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among girls in Mexico City. Environmental Research, 2019, 177, 108630.	3.7	48
59	EcoToxChip: A nextâ€generation toxicogenomics tool for chemical prioritization and environmental management. Environmental Toxicology and Chemistry, 2019, 38, 279-288.	2.2	47
60	Pulp and Paper Mill Effluents Contain Neuroactive Substances That Potentially Disrupt Neuroendocrine Control of Fish Reproduction. Environmental Science & Technology, 2009, 43, 1635-1641.	4.6	46
61	Multiple metals exposure in a small-scale artisanal gold mining community. Environmental Research, 2011, 111, 463-467.	3.7	45
62	Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and policy. Ecotoxicology, 2011, 20, 1487-1499.	1.1	45
63	Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes. Environmental Research, 2015, 137, 226-234.	3.7	45
64	Exposures of dental professionals to elemental mercury and methylmercury. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 78-85.	1.8	44
65	Injury Profiles Associated with Artisanal and Small-Scale Gold Mining in Tarkwa, Ghana. International Journal of Environmental Research and Public Health, 2015, 12, 7922-7937.	1.2	43
66	Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. International Journal of Hygiene and Environmental Health, 2018, 221, 609-615.	2.1	42
67	Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. International Journal of Environmental Research and Public Health, 2020, 17, 3042.	1.2	42
68	Environmental Heavy Metal Contamination from Electronic Waste (E-Waste) Recycling Activities Worldwide: A Systematic Review from 2005 to 2017. International Journal of Environmental Research and Public Health, 2021, 18, 3517.	1.2	42
69	Transdisciplinary and social-ecological health frameworks—Novel approaches to emerging parasitic and vector-borne diseases. Parasite Epidemiology and Control, 2019, 4, e00084.	0.6	41
70	Mammalian wildlife as complementary models in environmental neurotoxicology. Neurotoxicology and Teratology, 2010, 32, 114-119.	1.2	40
71	Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. Human and Experimental Toxicology, 2007, 26, 213-220.	1.1	39
72	Dietary predictors of urinary cadmium among pregnant women and children. Science of the Total Environment, 2017, 575, 1255-1262.	3.9	39

#	Article	IF	CITATIONS
73	Sex-related differences in the organismal and cellular stress response in juvenile salmon exposed to treated bleached kraft mill effluent. Fish Physiology and Biochemistry, 2003, 29, 173-179.	0.9	38
74	Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals. International Journal of Hygiene and Environmental Health, 2013, 216, 195-201.	2.1	38
75	Prevention-intervention strategies to reduce exposure to e-waste. Reviews on Environmental Health, 2018, 33, 219-228.	1.1	38
76	Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environmental Monitoring and Assessment, 2011, 176, 549-559.	1.3	34
77	Applications and implications of neurochemical biomarkers in environmental toxicology. Environmental Toxicology and Chemistry, 2015, 34, 22-29.	2.2	34
78	Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. Environmental Research, 2016, 149, 266-273.	3.7	34
79	An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana. International Journal of Environmental Research and Public Health, 2015, 12, 10020-10038.	1.2	33
80	Biochemical Markers of Neurotoxicity in Wildlife and Human Populations: Considerations for Method Development. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 1413-1429.	1.1	32
81	Characterization of Ambient Air Particulates and Particulate Mercury at Sha-Lu, Central Taiwan. Environmental Forensics, 2009, 10, 277-285.	1.3	32
82	Environmental and Occupational Exposures to Mercury Among Indigenous People in Dunkwa-On-Offin, a Small Scale Gold Mining Area in The South-West of Ghana. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 476-480.	1.3	32
83	Effects of methylmercury on epigenetic markers in three model species: Mink, chicken and yellow perch. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 157, 322-327.	1.3	32
84	Parental Whole Life Cycle Exposure to Dietary Methylmercury in Zebrafish (<i>Danio rerio</i>) Affects the Behavior of Offspring. Environmental Science & Technology, 2016, 50, 4808-4816.	4.6	32
85	In vitro and whole animal evidence that methylmercury disrupts GABAergic systems in discrete brain regions in captive mink. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 379-385.	1.3	31
86	The impact of mercury contamination on human health in the Arctic: A state of the science review. Science of the Total Environment, 2022, 831, 154793.	3.9	31
87	Urinary and plasma fluoride levels in pregnant women from Mexico City. Environmental Research, 2016, 150, 489-495.	3.7	29
88	A combined ecological and epidemiologic investigation of metal exposures amongst Indigenous peoples near the Marlin Mine in Western Guatemala. Science of the Total Environment, 2010, 409, 70-77.	3.9	28
89	Rapid methods to detect organic mercury and total selenium in biological samples. Chemistry Central Journal, 2011, 5, 3.	2.6	28
90	Historic and Contemporary Mercury Exposure and Potential Risk to Yellow-Billed Loons (Gavia) Tj ETQq0 0 0 rgl	3T /Qverloo	ck 10 Tf 50 62

#	Article	IF	CITATIONS
91	Application of the <scp>LU</scp> minometric <scp>M</scp> ethylation <scp>A</scp> ssay to ecological species: tissue quality requirements and a survey of <scp>DNA</scp> methylation levels in animals. Molecular Ecology Resources, 2014, 14, 943-952.	2.2	26
92	Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environmental Research, 2016, 149, 247-258.	3.7	26
93	Polychlorinated biphenyls, organochlorinated pesticides, and polybrominated diphenyl ethers in the cerebral cortex of wild river otters (Lontra canadensis). Environmental Pollution, 2007, 149, 25-30.	3.7	25
94	An Integrated Assessment Approach to Address Artisanal and Small-Scale Gold Mining in Ghana. International Journal of Environmental Research and Public Health, 2015, 12, 11683-11698.	1.2	25
95	The antidepressant venlafaxine may act as a neurodevelopmental toxicant in cuttlefish (Sepia) Tj ETQq1 1 0.78	4314 rgB1 1.4	- /Oygrlock 10
96	Title is missing!. Fish Physiology and Biochemistry, 2001, 25, 131-140.	0.9	24
97	Occurrence and bioaccessibility of mercury in commercial rice samples in Montreal (Canada). Food and Chemical Toxicology, 2019, 126, 72-78.	1.8	24
98	The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. NeuroToxicology, 2008, 29, 328-334.	1.4	23
99	Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure. Aquatic Toxicology, 2010, 99, 351-359.	1.9	23
100	Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin River Otters (Lontra canadensis). Ecotoxicology, 2013, 22, 469-475.	1.1	23
101	Elevated prenatal methylmercury exposure in Nigeria: Evidence from maternal and cord blood. Chemosphere, 2015, 119, 485-489.	4.2	23
102	Development and application of a novel method to characterize methylmercury exposure in newborns using dried blood spots. Environmental Research, 2017, 159, 276-282.	3.7	23
103	Derivation of Time-Activity Data Using Wearable Cameras and Measures of Personal Inhalation Exposure among Workers at an Informal Electronic-Waste Recovery Site in Ghana. Annals of Work Exposures and Health, 2019, 63, 829-841.	0.6	23
104	Alternatives assessment of perovskite solar cell materials and their methods of fabrication. Renewable and Sustainable Energy Reviews, 2020, 133, 110207.	8.2	23
105	Ecotoxicology of Mercury in Fish and Wildlife: Recent Advances. , 2012, , 223-238.		23
106	Mercury contamination and potential health risks to Arctic seabirds and shorebirds. Science of the Total Environment, 2022, 844, 156944.	3.9	23
107	Differential gene expression associated with dietary methylmercury (MeHg) exposure in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Ecotoxicology, 2013, 22, 740-751.	1.1	22
108	One health—Transdisciplinary opportunities for SETAC leadership in integrating and improving the health of people, animals, and the environment. Environmental Toxicology and Chemistry, 2016, 35, 2383-2391.	2.2	22

#	Article	IF	CITATIONS
109	Detectable Blood Lead Level and Body Size in Early Childhood. Biological Trace Element Research, 2016, 171, 41-47.	1.9	22
110	Relationship Between Methylmercury Contamination and Proportion of Aquatic and Terrestrial Prey in Diets of Shoreline Spiders. Environmental Toxicology and Chemistry, 2019, 38, 2503-2508.	2.2	22
111	National estimation of seafood consumption in Mexico: Implications for exposure to methylmercury and polyunsaturated fatty acids. Chemosphere, 2017, 174, 289-296.	4.2	21
112	An Early–Life Stage Alternative Testing Strategy for Assessing the Impacts of Environmental Chemicals in Birds. Environmental Toxicology and Chemistry, 2020, 39, 141-154.	2.2	21
113	Acute embryotoxic effects but no longâ€ŧerm reproductive effects of in ovo methylmercury exposure in zebra finches (<i>Taeniopygia guttata</i>). Environmental Toxicology and Chemistry, 2016, 35, 1534-1540.	2.2	20
114	Fluoride exposure and pubertal development in children living in Mexico City. Environmental Health, 2019, 18, 26.	1.7	20
115	Dietary and In Utero Exposure to a Pentabrominated Diphenyl Ether Mixture Did Not Affect Cholinergic Parameters in the Cerebral Cortex of Ranch Mink (Mustela vison). Toxicological Sciences, 2006, 96, 115-122.	1.4	19
116	Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes. Environmental Pollution, 2010, 158, 2733-2737.	3.7	19
117	Retrospective analysis of mercury content in feathers of birds collected from the state of Michigan (1895–2007). Ecotoxicology, 2011, 20, 1636-1643.	1.1	19
118	Methylmercury egg injections: Part 1-Tissue distribution of mercury in the avian embryo and hatchling. Ecotoxicology and Environmental Safety, 2013, 93, 68-76.	2.9	19
119	Understanding the Social Context of the ASGM Sector in Ghana: A Qualitative Description of the Demographic, Health, and Nutritional Characteristics of a Small-Scale Gold Mining Community in Ghana. International Journal of Environmental Research and Public Health, 2015, 12, 12679-12696.	1.2	19
120	FastBMD: an online tool for rapid benchmark dose–response analysis of transcriptomics data. Bioinformatics, 2021, 37, 1035-1036.	1.8	19
121	Occupational and Environmental Health Risks Associated with Informal Sector Activities—Selected Case Studies from West Africa. New Solutions, 2016, 26, 253-270.	0.6	18
122	Dried blood spots for estimating mercury exposure in birds. Environmental Pollution, 2018, 236, 236-246.	3.7	18
123	Mercury Speciation in Whole Blood and Dried Blood Spots from Capillary and Venous Sources. Analytical Chemistry, 2020, 92, 3605-3612.	3.2	18
124	International Consortium to Advance Cross‧pecies Extrapolation of the Effects of Chemicals in Regulatory Toxicology. Environmental Toxicology and Chemistry, 2021, 40, 3226-3233.	2.2	18
125	Innovation in regulatory approaches for endocrine disrupting chemicals: The journey to risk assessment modernization in Canada. Environmental Research, 2022, 204, 112225.	3.7	18
126	Toxicological risk of mercury for fish and invertebrate prey in the Arctic. Science of the Total Environment, 2022, 836, 155702.	3.9	18

#	Article	IF	CITATIONS
127	Drivers of and Obstacles to the Adoption of Toxicogenomics for Chemical Risk Assessment: Insights from Social Science Perspectives. Environmental Health Perspectives, 2020, 128, 105002.	2.8	17
128	Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta, Canada. Chemosphere, 2020, 250, 126285.	4.2	17
129	Mercury and selenium content of Taiwanese seafood. Food Additives and Contaminants: Part B Surveillance, 2011, 4, 212-217.	1.3	16
130	An investigation of modifying effects of single nucleotide polymorphisms in metabolism-related genes on the relationship between peripheral nerve function and mercury levels in urine and hair. Science of the Total Environment, 2012, 417-418, 32-38.	3.9	16
131	Molecular and Neurochemical Biomarkers in Arctic Beluga Whales (<i>Delphinapterus leucas</i>) Were Correlated to Brain Mercury and Selenium Concentrations Environmental Science & Technology, 2014, 48, 11551-11559.	4.6	16
132	Subcellular distributions of trace elements (Cd, Pb, As, Hg, Se) in the livers of Alaskan yelloweye rockfish (Sebastes ruberrimus). Environmental Pollution, 2018, 242, 63-72.	3.7	16
133	EcoToxModules: Custom Gene Sets to Organize and Analyze Toxicogenomics Data from Ecological Species. Environmental Science & Technology, 2020, 54, 4376-4387.	4.6	16
134	A comparison of licensed and un-licensed artisanal and small-scale gold miners (ASGM) in terms of socio-demographics, work profiles, and injury rates. BMC Public Health, 2017, 17, 862.	1.2	15
135	Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Research, 2021, 31, 713-720.	2.4	15
136	T1000: a reduced gene set prioritized for toxicogenomic studies. PeerJ, 2019, 7, e7975.	0.9	15
137	Mercury, selenium and neurochemical biomarkers in different brain regions of migrating common loons from Lake Erie, Canada. Ecotoxicology, 2011, 20, 1677-1683.	1.1	14
138	Multiple metals exposure and neurotoxic risk in bald eagles (<i>Haliaeetus leucocephalus</i>) from two Great Lakes states. Environmental Toxicology and Chemistry, 2012, 31, 623-631.	2.2	14
139	Methylmercury egg injections: Part 2—Pathology, neurochemistry, and behavior in the avian embryo and hatchling. Ecotoxicology and Environmental Safety, 2013, 93, 77-86.	2.9	14
140	Water Values in a Ghanaian Small-Scale Gold Mining Community. Human Organization, 2013, 72, 199-210.	0.2	14
141	Factors Affecting the Perception of New Approach Methodologies (NAMs) in the Ecotoxicology Community. Integrated Environmental Assessment and Management, 2020, 16, 269-281.	1.6	14
142	Assessing the Toxicity of 17α-Ethinylestradiol in Rainbow Trout Using a 4-Day Transcriptomics Benchmark Dose (BMD) Embryo Assay. Environmental Science & Technology, 2021, 55, 10608-10618.	4.6	14
143	Identification of Response Options to Artisanal and Small-Scale Gold Mining (ASGM) in Ghana via the Delphi Process. International Journal of Environmental Research and Public Health, 2015, 12, 11345-11363.	1.2	13
144	Developmental Methylmercury Exposure Affects Swimming Behavior and Foraging Efficiency of Yellow Perch (<i>Perca flavescens</i>) Larvae. ACS Omega, 2017, 2, 4870-4877.	1.6	13

#	Article	IF	CITATIONS
145	Cadmium exposure and age-associated DNA methylation changes in non-smoking women from northern Thailand. Environmental Epigenetics, 2017, 3, dvx006.	0.9	13
146	Lead (Pb) exposure assessment in dried blood spots using Total Reflection X-Ray Fluorescence (TXRF). Environmental Research, 2021, 198, 110444.	3.7	13
147	Dried blood spots to characterize mercury speciation and exposure in a Colombian artisanal and small-scale gold mining community. Chemosphere, 2021, 266, 129001.	4.2	13
148	Development of a Comprehensive Toxicity Pathway Model for 17α-Ethinylestradiol in Early Life Stage Fathead Minnows (<i>Pimephales promelas</i>). Environmental Science & Technology, 2021, 55, 5024-5036.	4.6	13
149	Hepatic polybrominated diphenyl ether (PBDE) levels in Wisconsin river otters (Lontra canadensis) and Michigan bald eagles (Haliaeetus leucocephalus). Journal of Great Lakes Research, 2015, 41, 222-227.	0.8	12
150	In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression among boys in Mexico City. Environmental Health, 2020, 19, 124.	1.7	12
151	Biomonitoring of metals in blood and urine of electronic waste (E-waste) recyclers at Agbogbloshie, Ghana. Chemosphere, 2021, 280, 130677.	4.2	12
152	Assessment of fish consumption and mercury exposure among pregnant women in Jamaica and Trinidad & Tobago. Chemosphere, 2016, 164, 462-468.	4.2	11
153	Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment. Chemosphere, 2016, 144, 1582-1588.	4.2	11
154	Mercury associated neurochemical response in Arctic barnacle goslings (Branta leucopsis). Science of the Total Environment, 2018, 624, 1052-1058.	3.9	11
155	Screeningâ€level risk assessment of methylmercury for nonâ€anadromous Arctic char (<i>Salvelinus) Tj ETQq1 1</i>	0.78431	4 rgBT /Overle
156	Micronutrient-rich dietary intake is associated with a reduction in the effects of particulate matter on blood pressure among electronic waste recyclers at Agbogbloshie, Ghana. BMC Public Health, 2020, 20, 1067.	1.2	11
157	Musculoskeletal Disorder Symptoms among Workers at an Informal Electronic-Waste Recycling Site in Agbogbloshie, Ghana. International Journal of Environmental Research and Public Health, 2021, 18, 2055.	1.2	11
158	Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Double rested Cormorant Embryos. Environmental Toxicology and Chemistry, 2021, 40, 3019-3033.	2.2	11
159	Occupational exposures to particulate matter and PM2.5-associated polycyclic aromatic hydrocarbons at the Agbogbloshie waste recycling site in Ghana. Environment International, 2022, 158, 106971.	4.8	11
160	Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation. NanoImpact, 2021, 24, 100369.	2.4	11
161	Piscivorous Mammalian Wildlife as Sentinels of Methylmercury Exposure and Neurotoxicity in Humans. , 2012, , 357-370.		10
162	In ovo exposure to organophosphorous flame retardants: survival, development, neurochemical, and behavioral changes in white leghorn chickens. Neurotoxicology and Teratology, 2015, 52, 228-235.	1.2	10

#	Article	IF	CITATIONS
163	An Ecological and Human Biomonitoring Investigation of Mercury Contamination at the Aamjiwnaang First Nation. EcoHealth, 2016, 13, 784-795.	0.9	10
164	The Minamata Convention on Mercury and the role for the environmental sciences community. Environmental Toxicology and Chemistry, 2018, 37, 2951-2952.	2.2	10
165	Effects on Apical Outcomes of Regulatory Relevance of Earlyâ€Life Stage Exposure of Doubleâ€Crested Cormorant Embryos to 4 Environmental Chemicals. Environmental Toxicology and Chemistry, 2021, 40, 390-401.	2.2	10
166	Clobal DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. International Archives of Occupational and Environmental Health, 2021, 94, 1931-1944.	1.1	10
167	Envisioning an international validation process for New Approach Methodologies in chemical hazard and risk assessment. Environmental Advances, 2021, 4, 100061.	2.2	10
168	Comparative analysis of transcriptomic points-of-departure (tPODs) and apical responses in embryo-larval fathead minnows exposed to fluoxetine. Environmental Pollution, 2022, 295, 118667.	3.7	10
169	Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20. Environmental Science and Pollution Research, 2010, 17, 181-186.	2.7	9
170	Pulmonary function and respiratory health of rural farmers and artisanal and small scale gold miners in Ghana. Environmental Research, 2017, 158, 522-530.	3.7	9
171	Mercury and neurochemical biomarkers in multiple brain regions of five Arctic marine mammals. NeuroToxicology, 2021, 84, 136-145.	1.4	9
172	Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine. Environmental Toxicology and Chemistry, 2022, 41, 1982-1992.	2.2	9
173	InÂvivo and InÂvitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern. Environmental Pollution, 2016, 211, 9-19.	3.7	8
174	A cellâ€free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species. Environmental Toxicology and Chemistry, 2017, 36, 3081-3090.	2.2	8
175	Structured identification of response options to address environmental health risks at the Agbogbloshie electronic waste site. Integrated Environmental Assessment and Management, 2017, 13, 980-991.	1.6	8
176	Genetic polymorphisms are associated with exposure biomarkers for metals and persistent organic pollutants among Inuit from the Inuvialuit Settlement Region, Canada. Science of the Total Environment, 2018, 634, 569-578.	3.9	8
177	Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio). Chemosphere, 2018, 195, 301-311.	4.2	8
178	Continuous exposure to mercury during embryogenesis and chick development affects later survival and reproduction of zebra finch (Taeniopygia guttata). Ecotoxicology, 2020, 29, 1117-1127.	1.1	8
179	Mercury exposure in relation to sleep duration, timing, and fragmentation among adolescents in Mexico City. Environmental Research, 2020, 191, 110216.	3.7	8
180	Variation in biomarker levels of metals, persistent organic pollutants, and omega-3 fatty acids in association with genetic polymorphisms among Inuit in Nunavik, Canada. Environmental Research, 2021, 200, 111393.	3.7	8

#	Article	IF	CITATIONS
181	Geolocators link marine mercury with levels in wild seabirds throughout their annual cycle: Consequences for trans-ecosystem biotransport. Environmental Pollution, 2021, 284, 117035.	3.7	8
182	Extracts from hardwood trees used in commercial paper mills contain biologically active neurochemical disruptors. Science of the Total Environment, 2012, 414, 205-209.	3.9	7
183	A comparative study of 3 alternative avian toxicity testing methods: Effects on hepatic gene expression in the chicken embryo. Environmental Toxicology and Chemistry, 2019, 38, 2546-2555.	2.2	7
184	Effects of Electronic and Electrical Waste–Contaminated Soils on Growth and Reproduction of Earthworm (<i>Alma nilotica</i>). Environmental Toxicology and Chemistry, 2022, 41, 287-297.	2.2	7
185	Soil Contamination and Bioaccumulation of Heavy Metals by a Tropical Earthworm Species (<i>Alma) Tj ETQq1 Chemistry, 2022, 41, 356-368.</i>	1 0.78431 2.2	4 rgBT /Over 7
186	The mink is still a reliable sentinel species in environmental health. Environmental Research, 2009, 109, 940-941.	3.7	6
187	Postmortem stability of brain GABAergic and glutamatergic receptors and enzymes under ecological conditions. Ecotoxicology and Environmental Safety, 2012, 84, 133-138.	2.9	6
188	Agreement between clinical screening procedures for neuropathy in the feet. Muscle and Nerve, 2012, 45, 653-658.	1.0	6
189	Organometal(loid)s. Fish Physiology, 2013, 33, 141-194.	0.2	6
190	Mercury speciation and subcellular distribution in experimentally dosed and wild birds. Environmental Toxicology and Chemistry, 2017, 36, 3289-3298.	2.2	6
191	Ecologically-relevant exposure to methylmercury during early development does not affect adult phenotype in zebra finches (Taeniopygia guttata). Ecotoxicology, 2018, 27, 259-266.	1.1	6
192	The challenge of pollution and health in Canada. Canadian Journal of Public Health, 2019, 110, 159-164.	1.1	6
193	Registration status, mercury exposure biomarkers, and neuropsychological assessment of artisanal and small-scale gold miners (ASGM) from the Western Region of Ghana. Environmental Research, 2021, 201, 111639.	3.7	6
194	Trapped river otters (<i>Lontra canadensis</i>) from central Saskatchewan differ in total and organic mercury concentrations by sex and geographic location. Facets, 2018, 3, 139-154.	1.1	6
195	Micronutrient Status of Electronic Waste Recyclers at Agbogbloshie, Ghana. International Journal of Environmental Research and Public Health, 2020, 17, 9575.	1.2	6
196	EcoToxXplorer: Leveraging Design Thinking to Develop a Standardized Webâ€Based Transcriptomics Analytics Platform for Diverse Users. Environmental Toxicology and Chemistry, 2022, 41, 21-29.	2.2	6
197	Neuroendocrine biochemical effects in methylmercury-exposed yellow perch. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 187, 10-18.	1.3	5
198	Comparison of Three Analytical Methods for the Quantitation of Mercury in Environmental Samples from the Volta Lake, Ghana. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 677-683.	1.3	5

#	Article	IF	CITATIONS
199	Dried Blood Spot Sampling of Landlocked Arctic Char (<i>Salvelinus alpinus</i>) for Estimating Mercury Exposure and Stable Carbon Isotope Fingerprinting of Essential Amino Acids. Environmental Toxicology and Chemistry, 2020, 39, 893-903.	2.2	5
200	Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas). Science of the Total Environment, 2022, 817, 152747.	3.9	5
201	Effects of Nonâ€native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient. Environmental Toxicology and Chemistry, 2020, 39, 2196-2207.	2.2	4
202	Methylmercury Measurements in Dried Blood Spots from Electronic Waste Workers Sampled from Agbogbloshie, Ghana. Environmental Toxicology and Chemistry, 2021, 40, 2183-2188.	2.2	4
203	Sex―and Developmental Stage–Related Differences in the Hepatic Transcriptome of Japanese Quail (<i>Coturnix japonica</i>) Exposed to 17βâ€Trenbolone. Environmental Toxicology and Chemistry, 2021, 40, 2559-2570.	2.2	4
204	Roundtable Discussion Groups Summary Papers: New Bioindicators for Mercury Toxicological Assessment: Recommendations from the First International Bioindicators Roundtable. Environmental Bioindicators, 2007, 2, 183-207.	0.4	3
205	Work-Related Exposures and Musculoskeletal Disorder Symptoms Among Informal E-Waste Recyclers at Agbogbloshie, Ghana. Lecture Notes in Networks and Systems, 2021, 222, 677-681.	0.5	3
206	Comparison and Agreement of Toxic and Essential Elements Between Venous and Capillary Whole Blood. Biological Trace Element Research, 2021, , 1.	1.9	3
207	Personal exposure to particulate matter and heart rate variability among informal electronic waste workers at Agbogbloshie: a longitudinal study. BMC Public Health, 2021, 21, 2161.	1.2	3
208	Targeted Metabolomics to Assess Exposure to Environmental Chemicals of Concern in Japanese Quail at Two Life Stages. Metabolites, 2021, 11, 850.	1.3	3
209	Consideration of metabolomics and transcriptomics data in the context of using avian embryos for toxicity testing. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 258, 109370.	1.3	3
210	Exploring the Impacts of Methylmercuryâ€Induced Behavioral Alterations in Larval Yellow Perch in Lake Michigan Using an Individualâ€Based Model. Transactions of the American Fisheries Society, 2020, 149, 664-680.	0.6	2
211	Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish (<i>Danio rerio</i>). Nanotoxicology, 2021, 15, 527-541.	1.6	2
212	Metal Exposures, Noise Exposures, and Audiometry from E-Waste Workers in Agbogbloshie, Ghana. International Journal of Environmental Research and Public Health, 2021, 18, 9639.	1.2	2
213	Analysis of copper, selenium, and zinc in newborn dried bloodspots using total reflection X-ray fluorescence (TXRF) spectroscopy. , 0, 1, e1.		2
214	Are Substitutes to Cd-Based Quantum Dots in Displays More Sustainable, Effective, and Cost Competitive? An Alternatives Assessment Approach. ACS Sustainable Chemistry and Engineering, 2022, 10, 2294-2307.	3.2	2
215	Chemical risk governance: Exploring stakeholder participation in Canada, the USA, and the EU. Ambio, 2021, , .	2.8	2
216	Association between toxic and essential metals in blood and global DNA methylation among electronic waste workers in Agbogbloshie, Chana. Environmental Science and Pollution Research, 0, ,	2.7	2

#	Article	IF	CITATIONS
217	Relationship of estimated dietary intake of n-3 polyunsaturated fatty acids from fish with peripheral nerve function after adjusting for mercury exposure. Science of the Total Environment, 2013, 454-455, 73-78.	3.9	1
218	Spatial Distribution of Heavy Metals and Pollution of Environmental Media Around a Used Lead-acid Battery Recycling Center in Ibadan, Nigeria. Journal of Health and Pollution, 2021, 11, 210304.	1.8	1
219	Using a Vitellogenesis Model to Link in vitro Neurochemical Effects of Pulp and Paper Mill Effluents to Adverse Reproductive Outcomes in Fish. , 2018, , 317-347.		1
220	Cell-Free Assays in Environmental Toxicology. , 2018, , 31-41.		1
221	The performance of dried blood spots for the assessment of lead exposure: A narrative review with a systematic search. Microchemical Journal, 2022, 172, 106930.	2.3	1
222	Variation of cholinergic biomarkers in brain regions and blood components of captive mink. Environmental Monitoring and Assessment, 2010, 162, 377-386.	1.3	0