
Andras Czirok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nintedanib and Dasatinib Treatments Induce Protective Autophagy as a Potential Resistance Mechanism in MPM Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 852812.	1.8	2
2	Novel insights into the fundamentals of palatal shelf elevation dynamics in normal mouse embryos. FASEB Journal, 2022, 36, .	0.2	0
3	Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data. Scientific Reports, 2021, 11, 1661.	1.6	42
4	SPECC1L-deficient primary mouse embryonic palatal mesenchyme cells show speed and directionality defects. Scientific Reports, 2021, 11, 1452.	1.6	11
5	Isolation and Time-Lapse Imaging of Primary Mouse Embryonic Palatal Mesenchyme Cells to Analyze Collective Movement Attributes. Journal of Visualized Experiments, 2021, , .	0.2	2
6	Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Scientific Reports, 2021, 11, 5798.	1.6	13
7	Noonan syndrome patient-specific induced cardiomyocyte model carrying SOS1 gene variant c.1654A>G. Experimental Cell Research, 2021, 400, 112508.	1.2	8
8	Transition from growth to decay of an epidemic due to lockdown. Biophysical Journal, 2021, 120, 2872-2879.	0.2	2
9	Development and Evaluation of a Human Skin Equivalent in a Semiautomatic Microfluidic Diffusion Chamber. Pharmaceutics, 2021, 13, 910.	2.0	15
10	Contact inhibition of locomotion generates collective cell migration without chemoattractants in an open domain. Physical Review E, 2021, 104, 014405.	0.8	2
11	In-frame deletion of SPECC1L microtubule association domain results in gain-of-function phenotypes affecting embryonic tissue movement and fusion events. Human Molecular Genetics, 2021, 31, 18-31.	1.4	6
12	Scalable Biomimetic Coaxial Aligned Nanofiber Cardiac Patch: A Potential Model for "Clinical Trials in a Dish― Frontiers in Bioengineering and Biotechnology, 2020, 8, 567842.	2.0	23
13	Viscoelastic Properties of ECM-Rich Embryonic Microenvironments. Frontiers in Cell and Developmental Biology, 2020, 8, 674.	1.8	3
14	Multicellular contractility contributes to the emergence of mesothelioma nodules. Scientific Reports, 2020, 10, 20114.	1.6	2
15	Multiscale modelling of motility wave propagation in cell migration. Scientific Reports, 2020, 10, 8128.	1.6	11
16	Targeted adaptive isolation strategy for COVID-19 pandemic. Infectious Disease Modelling, 2020, 5, 357-361.	1.2	24
17	Inâ€frame Genetic Disruption of SPECC1L Microtubuleâ€Interaction Domain Causes Embryonic Tissue Movement and Fusion Defects. FASEB Journal, 2020, 34, 1-1.	0.2	0
18	Enhanced endothelial motility and multicellular sprouting is mediated by the scaffold protein TKS4. Scientific Reports, 2019, 9, 14363.	1.6	4

#	Article	IF	CITATIONS
19	Absence of the Tks4 Scaffold Protein Induces Epithelial-Mesenchymal Transition-Like Changes in Human Colon Cancer Cells. Cells, 2019, 8, 1343.	1.8	10
20	Matrigel patterning reflects multicellular contractility. PLoS Computational Biology, 2019, 15, e1007431.	1.5	3
21	Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Scientific Reports, 2019, 9, 13188.	1.6	24
22	Polarization wave at the onset of collective cell migration. Physical Review E, 2019, 100, 032403.	0.8	7
23	Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells, 2019, 37, 910-923.	1.4	30
24	Tubastatin A attenuates chronic angiotensinâ€lâ€induced autophagy. FASEB Journal, 2019, 33, 662.33.	0.2	0
25	SPECC1Lâ€Deficient Cells Show Impaired Collective Cell Migration Attributes that are Rescued by Upregulation of PI3Kâ€AKT Pathway. FASEB Journal, 2019, 33, 774.22.	0.2	Ο
26	Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity. Acta Pharmacologica Sinica, 2018, 39, 1590-1603.	2.8	12
27	Nintedanib Is Active in Malignant Pleural Mesothelioma Cell Models and Inhibits Angiogenesis and Tumor Growth <i>In Vivo</i> . Clinical Cancer Research, 2018, 24, 3729-3740.	3.2	24
28	Software tools for cell culture-related 3D printed structures. PLoS ONE, 2018, 13, e0203203.	1.1	27
29	Pre-Conditioning Stem Cells in a Biomimetic Environment for Enhanced Cardiac Tissue Repair: In Vitro and In Vivo Analysis. Cellular and Molecular Bioengineering, 2018, 11, 321-336.	1.0	7
30	Soluble VEGFR1 signaling guides vascular patterns into dense branching morphologies. Journal of Theoretical Biology, 2018, 456, 261-278.	0.8	10
31	A Multiscale Analysis of Early Cardiogenesis Following VEGF Perturbations. FASEB Journal, 2018, 32, 94.1.	0.2	0
32	Optical-flow based non-invasive analysis of cardiomyocyte contractility. Scientific Reports, 2017, 7, 10404.	1.6	46
33	Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation. Scientific Reports, 2017, 7, 7358.	1.6	8
34	Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions. PLoS Computational Biology, 2017, 13, e1005411.	1.5	11
35	The role of Allee effect in modelling post resection recurrence of glioblastoma. PLoS Computational Biology, 2017, 13, e1005818.	1.5	44
36	SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination. Scientific Reports, 2016, 6, 17735.	1.6	41

#	Article	IF	CITATIONS
37	Extracellular matrix motion and early morphogenesis. Development (Cambridge), 2016, 143, 2056-2065.	1.2	72
38	Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility. PLoS ONE, 2015, 10, e0134093.	1.1	22
39	Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis. Physical Biology, 2015, 12, 016005.	0.8	10
40	The endoderm and myocardium join forces to drive early heart tube assembly. Developmental Biology, 2015, 404, 40-54.	0.9	38
41	Anomalous segregation dynamics of self-propelled particles. New Journal of Physics, 2015, 17, 063013.	1.2	16
42	Active Cell and ECM Movements During Development. Methods in Molecular Biology, 2015, 1189, 123-132.	0.4	7
43	Cell migration or cytokinesis and proliferation? – Revisiting the "go or grow―hypothesis in cancer cells in vitro. Experimental Cell Research, 2013, 319, 3094-3103.	1.2	84
44	Extracellular Matrix Dynamics in Early Development. Biology of Extracellular Matrix, 2013, , 19-36.	0.3	3
45	Collective cell streams in epithelial monolayers depend on cell adhesion. New Journal of Physics, 2013, 15, 075006.	1.2	47
46	Endothelial cell motility, coordination and pattern formation during vasculogenesis. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 587-602.	6.6	29
47	Computational imaging and modeling approaches reveal mechanisms driving myocardial precursor movements. FASEB Journal, 2013, 27, 16.3.	0.2	0
48	Invasion from a cell aggregate—the roles of active cell motion and mechanical equilibrium. Physical Biology, 2012, 9, 016010.	0.8	49
49	Pattern formation during vasculogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 153-162.	3.6	25
50	Convective tissue movements play a major role in avian endocardial morphogenesis. Developmental Biology, 2012, 363, 348-361.	0.9	55
51	Dynamic Imaging of VEGF Relative to the ECM and its Effects on Endocardial Cell Behavior During Cardiovascular Morphogenesis. FASEB Journal, 2012, 26, 209.6.	0.2	0
52	Extracellular matrix fluctuations during early embryogenesis. Physical Biology, 2011, 8, 045006.	0.8	16
53	Vascular Network Formation in Expanding versus Static Tissues: Embryos and Tumors. Genes and Cancer, 2011, 2, 1072-1080.	0.6	9
54	The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Developmental Biology, 2011, 358, 331-343.	0.9	27

#	Article	IF	CITATIONS
55	Inhibition of myosin II triggers morphological transition and increased nuclear motility. Cytoskeleton, 2011, 68, 325-339.	1.0	10
56	An active particle-based tracking framework for 2D and 3D time-lapse microscopy images. , 2011, 2011, 6613-8.		1
57	Analysis of endothelial cell movements during aortae development. FASEB Journal, 2011, 25, 177.1.	0.2	0
58	Dynamic imaging of cardiac precursor cell movements during early avian heart morphogenesis. FASEB Journal, 2011, 25, 181.3.	0.2	0
59	Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos. PLoS ONE, 2010, 5, e12674.	1.1	153
60	The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. Mathematical Modelling of Natural Phenomena, 2010, 5, 106-122.	0.9	33
61	Collective cell motion in endothelial monolayers. Physical Biology, 2010, 7, 046007.	0.8	177
62	Endothelial sprout formation during vasculogenesis. FASEB Journal, 2010, 24, 9.5.	0.2	0
63	Computational Analyses of Endocardial Cell Motion During Cardiovascular Morphogenesis in Transgenic Avian Embryos. FASEB Journal, 2010, 24, 180.3.	0.2	0
64	Multicellular sprouting during vasculogenesis. FASEB Journal, 2009, 23, 643.3.	0.2	0
65	Statistical analysis and mathematical modeling of collective cell motion in endothelial and epithelial cultures. FASEB Journal, 2009, 23, 826.1.	0.2	0
66	The Role of Fibronectin During Vasculogenesis. FASEB Journal, 2009, 23, 299.3.	0.2	0
67	NMDA receptor NR2B subunit overâ€expression increases cerebellar granule cell migratory activity. Journal of Neurochemistry, 2008, 104, 818-829.	2.1	21
68	Multicellular Sprouting In Vitro. Biophysical Journal, 2008, 95, 2702-2710.	0.2	42
69	Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility. Developmental Biology, 2008, 313, 545-555.	0.9	61
70	Multicellular Sprouting during Vasculogenesis. Current Topics in Developmental Biology, 2008, 81, 269-289.	1.0	36
71	Matrix Metalloproteinase 2-Integrin αvβ3 Binding Is Required for Mesenchymal Cell Invasive Activity but Not Epithelial Locomotion: A Computational Time-Lapse Study. Molecular Biology of the Cell, 2008, 19, 5529-5540.	0.9	46
72	A mathematical model of collective cell motility and pattern formation. FASEB Journal, 2008, 22, .	0.2	1

#	Article	IF	CITATIONS
73	Cell motility versus tissue motion in embryos: Which cells are really moving?. FASEB Journal, 2008, 22, 101.3.	0.2	0
74	Timeâ€lapse imaging of extracellular matrix assembly. FASEB Journal, 2008, 22, 101.1.	0.2	0
75	Biomechanical gradients and early vasculogenic patterns. FASEB Journal, 2008, 22, 387.4.	0.2	0
76	Network Formation of Tissue Cells via Preferential Attraction to Elongated Structures. Physical Review Letters, 2007, 98, 038102.	2.9	56
77	Subventricular zone neuronal progenitors undergo multiple divisions and retract their processes prior to each cytokinesis. European Journal of Neuroscience, 2007, 26, 593-604.	1.2	8
78	Local microenvironments versus tissue compartments in embryos — which cells are "really―moving and where are they going?. FASEB Journal, 2007, 21, A33.	0.2	0
79	VEâ€cadherin and avb3 integrinâ€mediated collective cell migration and patterning during vasculogenesis. FASEB Journal, 2007, 21, A35.	0.2	0
80	Multi cale Analysis of Cell and Tissue Patterning during Morphogenesis. FASEB Journal, 2007, 21, A198.	0.2	0
81	Elastic fiber formation: A dynamic view of extracellular matrix assembly using timer reporters. Journal of Cellular Physiology, 2006, 207, 87-96.	2.0	170
82	Elastic fiber macro-assembly is a hierarchical, cell motion-mediated process. Journal of Cellular Physiology, 2006, 207, 97-106.	2.0	93
83	Mesodermal cell displacements during avian gastrulation are due to both individual cell-autonomous and convective tissue movements. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19806-19811.	3.3	112
84	New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts. Journal of Cell Science, 2006, 119, 1350-1360.	1.2	87
85	Extracellular Matrix Macroassembly Dynamics in Early Vertebrate Embryos. Current Topics in Developmental Biology, 2006, 73, 237-258.	1.0	44
86	Perturbation of VEâ€cadherin and effects on the dynamics of endothelial cell behavior in the murine allantois. FASEB Journal, 2006, 20, A439.	0.2	0
87	Cerebellar granule cells show age-dependent migratory differencesin vitro. Journal of Neurobiology, 2005, 65, 135-145.	3.7	5
88	Humoral and contact interactions in astroglia/stem cell co-cultures in the course of glia-induced neurogenesis. Glia, 2005, 49, 430-444.	2.5	53
89	Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: Combined velocity and directionality analysis. Glia, 2005, 49, 492-500.	2.5	14
90	A Digital Image-Based Method for Computational Tissue Fate Mapping During Early Avian Morphogenesis. Annals of Biomedical Engineering, 2005, 33, 854-865.	1.3	54

#	Article	IF	CITATIONS
91	αvβ3 integrin-dependent endothelial cell dynamics in vivo. Development (Cambridge), 2004, 131, 2887-2897.	1.2	61
92	Irradiation and Taxol Treatment Result in Non-Monotonous, Dose-Dependent Changes in the Motility of Glioblastoma Cells. Journal of Neuro-Oncology, 2004, 67, 147-157.	1.4	47
93	Dynamic imaging of cell, extracellular matrix, and tissue movements during avian vertebral axis patterning. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 267-276.	3.6	53
94	Extracellular matrix dynamics during vertebrate axis formation. Developmental Biology, 2004, 268, 111-122.	0.9	84
95	Novel Approaches for the Study of Vascular Assembly and Morphogenesis in Avian Embryosâ~†. Trends in Cardiovascular Medicine, 2003, 13, 283-288.	2.3	41
96	Patterning of embryonic blood vessels. Developmental Dynamics, 2003, 228, 21-29.	0.8	27
97	Individual-based Models of Cohort Migration in Cell Cultures. , 2003, , 205-219.		4
98	Culturing of Avian Embryos for Time-Lapse Imaging. BioTechniques, 2003, 34, 274-278.	0.8	41
99	Laminin-1 increases motility, path-searching, and process dynamism of rat and mouse Muller glial cells in vitro: Implication of relationship between cell behavior and formation of retinal morphology. Cytoskeleton, 2002, 53, 203-213.	4.4	19
100	Multi-field 3D scanning light microscopy of early embryogenesis. Journal of Microscopy, 2002, 206, 209-217.	0.8	75
101	Is bioconvection enhancing bacterial growth in quiescent environments?. Environmental Microbiology, 2002, 4, 525-531.	1.8	21
102	Theory of periodic swarming of bacteria: Application toProteus mirabilis. Physical Review E, 2001, 63, 031915.	0.8	48
103	Dynamics of cell aggregation during in vitro neurogenesis by immortalized neuroectodermal progenitors. Journal of Neuroscience Research, 2000, 60, 184-194.	1.3	27
104	Proliferative and migratory responses of astrocytes to in vitro injury. Journal of Neuroscience Research, 2000, 61, 421-429.	1.3	77
105	Collective behavior of interacting self-propelled particles. Physica A: Statistical Mechanics and Its Applications, 2000, 281, 17-29.	1.2	308
106	Locomotion and proliferation of glioblastoma cells in vitro: statistical evaluation of videomicroscopic observations. Journal of Neurosurgery, 2000, 92, 428-434.	0.9	55
107	Dynamics of cell aggregation during in vitro neurogenesis by immortalized neuroectodermal progenitors. , 2000, 60, 184.		1
			_

Proliferative and migratory responses of astrocytes to in vitro injury. , 2000, 61, 421.

1

#	Article	IF	CITATIONS
109	Collective motion. , 1999, , 152-164.		4
110	Application of statistical mechanics to collective motion in biology. Physica A: Statistical Mechanics and Its Applications, 1999, 274, 182-189.	1.2	49
111	Collective motion of organisms in three dimensions. Physica A: Statistical Mechanics and Its Applications, 1999, 264, 299-304.	1.2	105
112	Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension. Physical Review Letters, 1999, 82, 209-212.	2.9	220
113	Exponential Distribution of Locomotion Activity in Cell Cultures. Physical Review Letters, 1998, 81, 3038-3041.	2.9	94
114	Spontaneously ordered motion of self-propelled particles. Journal of Physics A, 1997, 30, 1375-1385.	1.6	233
115	Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development. Physica A: Statistical Mechanics and Its Applications, 1997, 238, 181-197.	1.2	81
116	Hydrodynamics of bacterial motion. Physica A: Statistical Mechanics and Its Applications, 1997, 243, 304-318.	1.2	29
117	Fractal scaling and power-law landslide distribution in a micromodel of geomorphological evolution. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1997, 86, 525-530.	1.3	11
118	Chemotactic-based adaptive self-organization during colonial development. Physica A: Statistical Mechanics and Its Applications, 1996, 233, 678-698.	1.2	36
119	Response of bacterial colonies to imposed anisotropy. Physical Review E, 1996, 53, 1835-1843.	0.8	15
120	Formation of complex bacterial colonies via self-generated vortices. Physical Review E, 1996, 54, 1791-1801.	0.8	219
121	Possible origin of power-law behavior inn-tuple Zipf analysis. Physical Review E, 1996, 53, 6371-6375.	0.8	12
122	Correlations in binary sequences and a generalized Zipf analysis. Physical Review E, 1995, 52, 446-452.	0.8	67
123	Cooperative Formation of Chiral Patterns during Growth of Bacterial Colonies. Physical Review Letters, 1995, 75, 2899-2902.	2.9	124
124	COOPERATIVE STRATEGIES IN FORMATION OF COMPLEX BACTERIAL PATTERNS. Fractals, 1995, 03, 849-868.	1.8	15
125	Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters, 1995, 75, 1226-1229.	2.9	5,647
126	FRACTAL CLUSTERS AND SELF-ORGANIZED CRITICALITY. Fractals, 1994, 02, 153-168.	1.8	2

#	Article	IF	CITATIONS
127	COMMUNICATION, REGULATION AND CONTROL DURING COMPLEX PATTERNING OF BACTERIAL COLONIES. Fractals, 1994, 02, 15-44.	1.8	57
128	Self-affine roughening in a model experiment on erosion in geomorphology. Physica A: Statistical Mechanics and Its Applications, 1994, 205, 355-366.	1.2	13
129	Generic modelling of cooperative growth patterns in bacterial colonies. Nature, 1994, 368, 46-49.	13.7	520
130	Cooperative Strategies and Genome Cybernetics in Formation of Complex Bacterial Patterns. Materials Research Society Symposia Proceedings, 1994, 367, 405.	0.1	0
131	COMMUNICATION, REGULATION AND CONTROL DURING COMPLEX PATTERNING OF BACTERIAL COLONIES. , 1994, , 3-32.		0
132	ON THE EXISTENCE OF WELL DEFINED SINGULARITIES IN MULTIFRACTALS. Fractals, 1993, 01, 199-204.	1.8	0
133	Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution. Physical Review Letters, 1993, 71, 2154-2157	2.9	43