Susana Rodriguez-Couto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685899/publications.pdf Version: 2024-02-01

		66343	62596
114	6,815	42	80
papers	citations	h-index	g-index
121	121	121	6870
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 2006, 24, 500-513.	11.7	1,119
2	Application of solid-state fermentation to food industry—A review. Journal of Food Engineering, 2006, 76, 291-302.	5.2	535
3	Dye removal by immobilised fungi. Biotechnology Advances, 2009, 27, 227-235.	11.7	379
4	Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration and Biodegradation, 2014, 90, 71-78.	3.9	208
5	Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 2005, 22, 211-219.	3.6	196
6	A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresource Technology, 2019, 271, 360-367.	9.6	192
7	Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochemical Engineering Journal, 2020, 164, 107779.	3.6	180
8	Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 2007, 25, 558-569.	11.7	176
9	Applications of fungal cellulases in biofuel production: Advances and limitations. Renewable and Sustainable Energy Reviews, 2018, 82, 2379-2386.	16.4	170
10	Uses of Laccases in the Food Industry. Enzyme Research, 2010, 2010, 1-8.	1.8	152
11	Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. Journal of Hazardous Materials, 2007, 147, 900-905.	12.4	147
12	Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 2014, 20, 2939-2947.	5.8	142
13	Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. Bioresource Technology, 2010, 101, 8509-8514.	9.6	125
14	Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 2015, 208, 99-105.	4.9	120
15	Banana skin: A novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes and Pigments, 2007, 75, 32-37.	3.7	101
16	Cost analysis in laccase production. Journal of Environmental Management, 2011, 92, 2907-2912.	7.8	94
17	Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 2007, 40, 1286-1290.	3.2	87
18	Removal of synthetic dyes by an ecoâ€friendly strategy. Engineering in Life Sciences. 2009. 9. 116-123.	3.6	86

#	Article	IF	CITATIONS
19	Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation. Advanced Powder Technology, 2020, 31, 875-885.	4.1	85
20	Biodegradation of a simulated textile effluent by immobilised-coated laccase in laboratory-scale reactors. Applied Catalysis A: General, 2010, 373, 147-153.	4.3	77
21	Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. Journal of Hazardous Materials, 2009, 169, 691-696.	12.4	74
22	Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. Journal of Environmental Health Science & Engineering, 2016, 14, 1.	3.0	73
23	Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochemical Engineering Journal, 2003, 15, 21-26.	3.6	71
24	Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresource Technology, 2011, 102, 10359-10362.	9.6	70
25	Utilisation of grape seeds for laccase production in solid-state fermentors. Journal of Food Engineering, 2006, 74, 263-267.	5.2	66
26	The Determination of Assay for Laccase of Bacillus subtilis WPI with Two Classes of Chemical Compounds as Substrates. Indian Journal of Microbiology, 2012, 52, 701-707.	2.7	65
27	Dye decolorization by Trametes hirsuta immobilized into alginate beads. World Journal of Microbiology and Biotechnology, 2005, 21, 405-409.	3.6	64
28	Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Journal of Food Engineering, 2005, 68, 315-319.	5.2	63
29	Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 2019, 218, 477-486.	8.2	61
30	Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta. Journal of Hazardous Materials, 2007, 148, 768-770.	12.4	58
31	Editorial: Microbial Secondary Metabolites: Recent Developments and Technological Challenges. Frontiers in Microbiology, 2019, 10, 914.	3.5	57
32	Industrial and environmental applications of white-rot fungi. Mycosphere, 2017, 8, 456-466.	6.1	56
33	Design of Stable and Powerful Nanobiocatalysts, Based on Enzyme Laccase Immobilized on Self-Assembled 3D Graphene/Polymer Composite Hydrogels. ACS Applied Materials & Interfaces, 2015, 7, 14104-14112.	8.0	55
34	Exploitation of a waste from the brewing industry for laccase production by two Trametes species. Journal of Food Engineering, 2004, 64, 423-428.	5.2	52
35	Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environmental Science and Pollution Research, 2010, 17, 145-153.	5.3	52
36	Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. Journal of Environmental Management, 2013, 129, 324-332.	7.8	51

#	Article	IF	CITATIONS
37	Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. Journal of Molecular Liquids, 2016, 221, 1237-1242.	4.9	51
38	A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight. Environmental Pollution, 2020, 261, 114127.	7.5	51
39	Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor. Letters in Applied Microbiology, 2006, 42, 060316073800005.	2.2	49
40	Reutilisation of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta. Journal of Food Engineering, 2005, 66, 419-423.	5.2	48
41	Removal of noxious dye—Acid Orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone. Journal of Industrial and Engineering Chemistry, 2015, 31, 124-131.	5.8	47
42	Production of Laccase byTrametes hirsuta Grown in an Immersion Bioreactor and its Application in the Docolorization of Dyes from a Leather Factory. Engineering in Life Sciences, 2004, 4, 233-238.	3.6	46
43	Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. Journal of Hazardous Materials, 2009, 164, 296-300.	12.4	46
44	Praseodymium-doped cadmium tungstate (CdWO4) nanoparticles for dye degradation with sonocatalytic process. Polyhedron, 2020, 190, 114792.	2.2	45
45	Coating of immobilised laccase for stability enhancement: A novel approach. Applied Catalysis A: General, 2007, 329, 156-160.	4.3	37
46	Coconut flesh: a novel raw material for laccase production by Trametes hirsuta under solid-state conditions Journal of Food Engineering, 2005, 71, 208-213.	5.2	35
47	Production of laccase and decolouration of the textile dye Remazol Brilliant Blue R in temporary immersion bioreactors. Journal of Hazardous Materials, 2011, 194, 297-302.	12.4	34
48	A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns. Journal of Hazardous Materials, 2012, 233-234, 158-162.	12.4	34
49	Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Advances in Colloid and Interface Science, 2021, 293, 102438.	14.7	34
50	Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions. FEMS Microbiology Letters, 2011, 318, 27-34.	1.8	33
51	Enzymatic potential for the valorization of agro-industrial by-products. Biotechnology Letters, 2020, 42, 1799-1827.	2.2	33
52	Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes. Journal of Hazardous Materials, 2009, 169, 176-181.	12.4	32
53	Decolorization of simulated textile dye baths by crude laccases from <i>Trametes hirsuta</i> and <i>Cerrena unicolor</i> . Engineering in Life Sciences, 2010, 10, 242-247.	3.6	32
54	Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology and Innovation, 2021, 21, 101323.	6.1	32

#	Article	IF	CITATIONS
55	Optimum stability conditions of pH and temperature for ligninase and manganese-dependent peroxidase from Phanerochaete chrysosporium. Application to in vitro decolorization of Poly R-478 by MnP. World Journal of Microbiology and Biotechnology, 2006, 22, 607-612.	3.6	31
56	Inhibitors of Laccases: A Review. Current Enzyme Inhibition, 2006, 2, 343-352.	0.4	30
57	Preparation, characterization, and application of modified carbonized lignin as an anode for sustainable microbial fuel cell. Chemical Engineering Research and Design, 2021, 155, 49-60.	5.6	30
58	Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium. Biodegradation, 2001, 12, 283-289.	3.0	29
59	Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges?. Chemosphere, 2022, 294, 133709.	8.2	28
60	Biodegradation of bisphenol A by the newly-isolated Enterobacter gergoviae strain BYK-7 enhanced using genetic manipulation. RSC Advances, 2015, 5, 29563-29572.	3.6	27
61	Efficiency of <i>Pleurotus florida</i> Laccase on Decolorization and Detoxification of the Reactive Dye Remazol Brilliant Blue R (RBBR) under Optimized Conditions. Clean - Soil, Air, Water, 2013, 41, 665-672.	1.1	26
62	Mandarin peelings: The best carbon source to produce laccase by static cultures of Trametes pubescens. Chemosphere, 2007, 67, 1677-1680.	8.2	25
63	Isolation and Characterization of Actinobacteria from Algerian Sahara Soils with Antimicrobial Activities. International Journal of Molecular and Cellular Medicine, 2017, 6, 109-120.	1.1	25
64	Effect of two wastes from groundnut processing on laccase production and dye decolourisation ability. Journal of Food Engineering, 2006, 73, 388-393.	5.2	24
65	Production of manganese-dependent peroxidase in a new solid-state bioreactor byPhanerochœte chrysosporium grown on wood shavings. Application to the decolorization of synthetic dyes. Folia Microbiologica, 2002, 47, 417-421.	2.3	22
66	Synthesis of FeNi ₃ /SiO ₂ /CuS magnetic nano-composite as a novel adsorbent for Congo Red dye removal. International Journal of Environmental Analytical Chemistry, 2022, 102, 2342-2362.	3.3	22
67	Ligninolytic enzymes from corncob cultures ofPhanerochaete chrysosporiumunder semi-solid-state conditions. Acta Biotechnologica, 1999, 19, 17-25.	0.9	21
68	The effect of violuric acid on the decolourization of recalcitrant dyes by laccase from Trametes hirsuta. Dyes and Pigments, 2007, 74, 123-126.	3.7	20
69	Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system. Environmental Science and Pollution Research, 2013, 20, 5177-5187.	5.3	20
70	Adsorption of ethidium bromide (EtBr) from aqueous solutions by natural pumice and aluminium-coated pumice. Journal of Molecular Liquids, 2016, 213, 41-47.	4.9	17
71	Rapid and high purification of olive mill wastewater (OMV) with the combination electrocoagulation-catalytic sonoproxone processes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 47-53.	5.3	17
72	Reduced graphene oxide hydrogels and xerogels provide efficient platforms for immobilization and laccase production by <i>Trametes pubescens</i> . Biotechnology Journal, 2014, 9, 578-584.	3.5	16

#	Article	IF	CITATIONS
73	Enhancing laccase production by a newly-isolated strain of Pycnoporus sanguineus with high potential for dye decolouration. RSC Advances, 2014, 4, 34096.	3.6	16
74	Characterization of Penicillium crustosum l-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 2021, 203, 2625-2637.	2.2	16
75	Enzymatic synthesis of Tinuvin. Enzyme and Microbial Technology, 2007, 40, 1748-1752.	3.2	15
76	Enzymatic Biotransformation of Synthetic Dyes. Current Drug Metabolism, 2009, 10, 1048-1054.	1.2	15
77	Semi-solid-state fermentation: A promising alternative for neomycin production by the actinomycete Streptomyces fradiae. Journal of Biotechnology, 2013, 165, 195-200.	3.8	15
78	In vivodecolourization of the polymeric dye poly R-478 by corncob cultures ofPhanerochaete chrysosporium. Acta Biotechnologica, 2000, 20, 31-38.	0.9	14
79	Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju. Applied Biochemistry and Microbiology, 2017, 53, 222-229.	0.9	14
80	Solid-State Fermentation for Laccases Production and Their Applications. , 2018, , 211-234.		14
81	Fungal Laccase: A Versatile Enzyme for Biotechnological Applications. Fungal Biology, 2019, , 429-457.	0.6	14
82	New Type Biomembrane: Transport and Biodegradation of Reactive Textile Dye. ACS Omega, 2020, 5, 9813-9819.	3.5	14
83	Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor. Water, Air, and Soil Pollution, 2012, 223, 2463-2472.	2.4	12
84	Decolouration of industrial metal-complex dyes in successive batches by active cultures of Trametes pubescens. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 156-160.	4.4	12
85	Reversible covalent immobilization of <i>Trametes villosa</i> laccase onto thiolsulfinateâ€agarose: An insoluble biocatalyst with potential for decoloring recalcitrant dyes. Biotechnology and Applied Biochemistry, 2015, 62, 502-513.	3.1	10
86	Green Nanotechnology for Biofuel Production. Biofuel and Biorefinery Technologies, 2019, , 73-82.	0.3	10
87	High BPA removal by immobilized crude laccase in a batch fluidized bed bioreactor. Biochemical Engineering Journal, 2022, 184, 108489.	3.6	10
88	Synthesis and characterization of nanoparticles and composites as bactericides. Journal of Microbiological Methods, 2019, 167, 105736.	1.6	9
89	Desalination and power generation of caspian sea by applying new designed microbial desalination cells in batch operation mode. Environmental Progress and Sustainable Energy, 2019, 38, 13205.	2.3	9
90	Do disinfection byproducts in drinking water have an effect on human cancer risk worldwide? A metaâ€analysis. Environmental Quality Management, 2019, 29, 105-119.	1.9	9

#	Article	IF	CITATIONS
91	H ₂ SO ₄ -modified <i>Aloe vera</i> leaf shells for the removal of <i>P</i> -chlorophenol and methylene blue from aqueous environment. Toxin Reviews, 2020, 39, 57-67.	3.4	9
92	Laccase fromTrametes hirsuta Grown on Paper Cuttings: Application to Synthetic Dye Decolorization at Different pH Values. Engineering in Life Sciences, 2007, 7, 229-234.	3.6	8
93	Environmental, scanning electron and optical microscope image analysis software for determining volume and occupied area of solidâ€state fermentation fungal cultures. Biotechnology Journal, 2011, 6, 45-55.	3.5	8
94	A modeling study by artificial neural network on ethidium bromide adsorption optimization using natural pumice and iron-coated pumice. Desalination and Water Treatment, 2016, 57, 13472-13483.	1.0	8
95	Porous heat-treated fungal biomass: preparation, characterization and application for removal of textile dyes from aqueous solutions. Journal of Porous Materials, 2019, 26, 1475-1488.	2.6	7
96	Synthesis and characterisation of FeNi3@SiO2@TiO2 nano-composite and its application as a catalyst in a photochemical oxidation process to decompose tetracycline. , 0, 195, 435-449.		6
97	Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants. Environmental Science and Pollution Research, 2016, 23, 15370-15380.	5.3	5
98	Evaluation of antimicrobial activity of Terfezia arenaria extracts collected from Saharan desert against bacteria and filamentous fungi. 3 Biotech, 2019, 9, 281.	2.2	4
99	Synthesis and characterization of FeNi3 nanoparticles and their application as catalysts for penicillin G degradation in a Fenton-like reaction. , 0, 181, 391-398.		3
100	Production of a Biopolymer at Reactor Scale: A Laboratory Experience. Journal of Chemical Education, 2011, 88, 1175-1177.	2.3	2
101	Potential of White-Rot Fungi to Treat Xenobiotic-Containing Wastewater. Fungal Biology, 2016, , 91-113.	0.6	2
102	Degradation of Azo Dyes by White-Rot Fungi. Environmental Science and Engineering, 2015, , 315-331.	0.2	2
103	Removal efficiency of nitrate, phosphate, fecal and total coliforms by horizontal subsurface flow-constructed wetland from domestic wastewater. Environmental Health Engineering and Management, 2019, 6, 105-111.	0.7	2
104	Socio-Environmental Determinants and Human Health Exposures in Arid and Semi-Arid Zones of Iran—Narrative Review. Environmental Health Insights, 2022, 16, 117863022210897.	1.7	2
105	Poly-R-478 and ABTS oxidation by the white-rot fungus Trametes pubescens on agar plates. Journal of Biotechnology, 2007, 131, S229.	3.8	1
106	Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene. Folia Microbiologica, 2017, 62, 325-334.	2.3	1
107	Effect of Urmia Lake's drying on groundwater corrosion and scaling potential in the northwest of Iran (Case study: Spring and summer, 2015). Environmental Quality Management, 2018, 27, 65-72.	1.9	1

108 Current Trends in the Production of Ligninolytic Enzymes. , 2019, , 67-87.

1

#	Article	IF	CITATIONS
109	Corrigendum to "Surfactant modified kaolinite (MK-BZK) as an adsorbent for the removal of diazinon from aqueous solutions" published in vol. 196, August 2020, pp. 137-145 (doi: 10.5004/dwt.2020.25922). , 0, 201, 463-463.		1
110	Strategies of Biotechnological Innovations Using Trichoderma. Soil Biology, 2020, , 325-350.	0.8	1
111	Smart nanohybrid constructs: concept and designing for environmental remediation. Chemosphere, 2022, 301, 134616.	8.2	1
112	Using biotechnology in the laboratory: Using an immobilizedâ€laccase reactorâ€system to learn about wastewater treatment. Biochemistry and Molecular Biology Education, 2009, 37, 182-185.	1.2	0
113	Biophotodegradation of pollutants from wastewater. , 2021, , 269-281.		0
114	Surfactant modified kaolinite (MK-BZK) as an adsorbent for the removal of diazinon from aqueous solutions. , 0, 195, 137-145.		0