
Ema Žagar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685857/publications.pdf Version: 2024-02-01

FMA Å16ACAD

#	Article	IF	CITATIONS
1	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	12.6	167
2	Structural basis for the multitasking nature of the potato virus Y coat protein. Science Advances, 2019, 5, eaaw3808.	10.3	61
3	Chemical Recycling of Aliphatic Polyamides by Microwave-Assisted Hydrolysis for Efficient Monomer Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 16274-16282.	6.7	42
4	Highly Porous Cationic Polyelectrolytes via Oil-in-Water Concentrated Emulsions: Synthesis and Adsorption Kinetic Study. Langmuir, 2018, 34, 10353-10362.	3.5	40
5	Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 1323-1332.	6.7	35
6	Shape Memory Behavior of Emulsion-Templated Poly(ε-Caprolactone) Synthesized by Organocatalyzed Ring-Opening Polymerization. Macromolecules, 2019, 52, 9291-9298.	4.8	34
7	Pitfalls in Size Characterization of Soft Particles by Dynamic Light Scattering Online Coupled to Asymmetrical Flow Field-Flow Fractionation. Analytical Chemistry, 2017, 89, 11744-11752.	6.5	30
8	Quantitative Determination of PA6 and/or PA66 Content in Polyamide-Containing Wastes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11818-11826.	6.7	25
9	Preparation of Synthetic Polypeptide–PolyHIPE Hydrogels with Stimuli-Responsive Behavior. Macromolecules, 2021, 54, 8321-8330.	4.8	18
10	Porous Polystyrene Monoliths Prepared from <i>in Situ</i> Simultaneous Interpenetrating Polymer Networks: Modulation of Morphology by Polymerization Kinetics. Macromolecules, 2019, 52, 819-826.	4.8	15
11	Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials, 2022, 12, 1837.	4.1	15
12	Emulsion-templated synthetic polypeptide scaffolds prepared by ring-opening polymerization of <i>N</i> -carboxyanhydrides. Polymer Chemistry, 2020, 11, 4260-4270.	3.9	14
13	Mechanisms of Single-Walled Carbon Nanotube Network Formation and Its Configuration in Polymer-Based Nanocomposites. Macromolecules, 2021, 54, 3334-3346.	4.8	9
14	Melt Polymerization of Acrylamide Initiated by Nucleophiles: A Route toward Highly Branched and Amorphous Polyamide 3. ACS Applied Polymer Materials, 2021, 3, 2018-2026.	4.4	9
15	Noncovalent Protection for Direct Synthesis of α-Amino-ω-hydroxyl Poly(ethylene oxide). ACS Macro Letters, 2021, 10, 737-743.	4.8	8
16	Highly Porous Poly(arylene cyano-vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil Double Emulsion Templates. ACS Macro Letters, 2021, 10, 1248-1253.	4.8	8
17	Azine- and imine-linked conjugated polyHIPEs through Schiff-base condensation reaction. Polymer Chemistry, 2022, 13, 474-478.	3.9	8
18	An environmentally benign post-polymerization functionalization strategy towards unprecedented poly(vinylamine) polyHIPEs. Polymer Chemistry, 2021, 12, 1155-1164.	3.9	5

#	Article	IF	CITATIONS
19	Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. Langmuir, 2018, 34, 8983-8993.	3.5	3