Liang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685725/publications.pdf

Version: 2024-02-01

		257101	315357
89	1,869	24	38
papers	citations	h-index	g-index
89	89	89	934
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 2019, 7, 345-354.	5.5	154
2	Effect of Y content on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn alloy with duplex structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 240-247.	2.6	70
3	Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. Journal of Alloys and Compounds, 2015, 620, 172-179.	2.8	66
4	High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy. Journal of Magnesium and Alloys, 2019, 7, 597-604.	5.5	61
5	Microstructure and tensile properties of as-extruded Mg–Li–Zn–Gd alloys reinforced with icosahedral quasicrystal phase. Materials & Design, 2015, 66, 162-168.	5.1	58
6	Microstructural characteristics and mechanical properties of cast Al-3Li-xCu-0.2Zr alloy. Materials Science & Science & Properties, Microstructure and Processing, 2016, 677, 29-40.	2.6	56
7	Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Materials Science & Droperties, Microstructural Materials: Properties, Microstructure and Processing, 2014, 595, 109-117.	2.6	55
8	Effects of Sc addition on the microstructure and mechanical properties of cast Al-3Li-1.5Cu-0.15Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 232-238.	2.6	48
9	Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy. Materials and Design, 2016, 92, 880-887.	3.3	44
10	Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr alloy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 411-420.	2.6	43
11	Influence of Sc content on the microstructure and mechanical properties of cast Al-2Li-2Cu-0.5Mg-0.2Zr alloy. Materials Characterization, 2018, 142, 223-236.	1.9	43
12	Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam. Materials and Design, 2015, 83, 451-458.	3.3	42
13	Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Materials and Design, 2016, 95, 398-409.	3.3	41
14	Microstructure and mechanical properties of as-cast and extruded Mg–8Li–3Al–2Zn–0.5Nd alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 621, 198-203.	2.6	40
15	Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment. Materials Characterization, 2016, 114, 234-242.	1.9	40
16	Microstructural evolution and mechanical properties of cast Al-2Li-2Cu-0.5Mg-0.2Zr alloy during heat treatment. Materials Characterization, 2017, 132, 312-319.	1.9	40
17	Preparation of an Mg–Gd–Zn alloy semisolid slurry by low frequency electro-magnetic stirring. Materials and Design, 2015, 84, 53-63.	3.3	39
18	Influence of heat treatment on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn–xY alloy with duplex structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 87-94.	2.6	38

#	Article	IF	Citations
19	Effect of heat treatment on the microstructure and mechanical properties of extruded Al–4Cu–1Li–0.4Mg–0.4Ag–0.18Zr Alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 11-19.	2.6	37
20	Study on microstructure and mechanical properties of Alâ€"Mgâ€"Mnâ€"Er alloy joints welded by TIG and laser beam. Materials & Design, 2012, 40, 117-123.	5.1	35
21	Balance of mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy by solution and low-temperature aging treatment. Journal of Alloys and Compounds, 2019, 791, 655-664.	2.8	34
22	Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process. Materials & Design, 2015, 67, 1-8.	5.1	30
23	Influences of Mn content on the microstructures and mechanical properties of cast Al-3Li-2Cu-0.2Zr alloy. Journal of Alloys and Compounds, 2017, 715, 421-431.	2.8	30
24	Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys. Acta Materialia, 2022, 226, 117673.	3.8	29
25	Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg–Y–RE–Zr alloy by tungsten inert gas welding. Journal of Magnesium and Alloys, 2022, 10, 180-194.	5.5	26
26	Effect of cooling condition on microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process. Transactions of Nonferrous Metals Society of China, 2012, 22, 2357-2363.	1.7	25
27	Effect of Zn on precipitation evolution and mechanical properties of a high strength cast Al-Li-Cu alloy. Materials Characterization, 2020, 160, 110089.	1.9	25
28	Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding. Journal of Materials Engineering and Performance, 2016, 25, 1870-1879.	1.2	24
29	Effects of processing parameters on microstructure and mechanical properties of squeeze-cast Mg–12Zn–4Al–0.5Ca alloy. Materials & Design, 2014, 63, 729-737.	5.1	22
30	Influences of Mg content on the microstructures and mechanical properties of cast Al–2Li–2Cu–0.2Zr alloy. Journal of Materials Science, 2019, 54, 791-811.	1.7	22
31	Microstructure characteristics of an ultra-high strength extruded Al-4.7Cu–1Li-0.5Mg-0.1Zr–1Zn alloy during heat treatment. Journal of Alloys and Compounds, 2020, 813, 152216.	2.8	22
32	Effect of NaOH concentration on microstructure and corrosion resistance of MAO coating on cast Alâ°'Li alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 913-924.	1.7	21
33	An insight into the precipitate evolution and mechanical properties of a novel high-performance cast Al-Li-Cu-Mg-X alloy. Journal of Alloys and Compounds, 2021, 875, 159996.	2.8	21
34	Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloyâ€"Synergistic effect of Sc-alloying and optimized artificial ageing scheme. Journal of Materials Science and Technology, 2022, 96, 212-225.	5.6	20
35	Effects of Mg and Sc additions on the microstructure, mechanical properties, and thermal stability of a cast Al-2Li-2Cu-0.2Zr alloy after thermal exposure. Journal of Alloys and Compounds, 2019, 788, 367-382.	2.8	19
36	Effects of heat treatment and pre-stretching on the mechanical properties and microstructure evolution of extruded 2050 Al–Cu–Li alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143236.	2.6	19

#	Article	lF	CITATIONS
37	Microstructure evolution and mechanical properties of rheo-processed ADC12 alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 3070-3080.	1.7	18
38	Correlation Between Microstructure and Mechanical Properties of 2219-T8 Aluminum Alloy Joints by VPTIG Welding. Acta Metallurgica Sinica (English Letters), 2017, 30, 438-446.	1.5	18
39	Al–5.5Mg–1.5Li–0.5Zn–0.07Sc–0.07Zr alloy produced by gravity casting and heat treatment processi Materials and Manufacturing Processes, 2018, 33, 891-897.	ng 2.7	18
40	Achieving low-temperature Zr alloying for microstructural refinement of sand-cast Mg-Gd-Y alloy by employing zirconium tetrachloride. Materials Characterization, 2021, 171, 110727.	1.9	18
41	Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 3413-3420.	1.7	16
42	Microstructures and mechanical properties of ultralight cast Al-3Li-XMg-0.1Zr alloys. Materials Characterization, 2020, 170, 110698.	1.9	15
43	High-cycle fatigue behavior of Mg-8Li-3Al-2Zn-0.5Y alloy under different states. Journal of Magnesium and Alloys, 2021, 9, 1609-1618.	5.5	15
44	Effect of solution treatment on microstructure and mechanical properties of cast Al–3Li–1.5Cu–0.2Zr alloy. Journal of Materials Research, 2016, 31, 1124-1132.	1.2	14
45	Refinement of primary Si in Al–20%Si alloy by MRB through phosphorus additions. Journal of Materials Processing Technology, 2015, 225, 485-491.	3.1	13
46	Primary phase evolution of rheo-processed ADC12 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 19-27.	1.7	13
47	Microstructural characteristics and mechanical properties of extruded Al-4Cu-1Li-0.4Mg-0.1Zr-xZn alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 223-232.	2.6	13
48	Preparation and rheo-squeeze casting of semi-solid AZ91â€"2 wt% Ca magnesium alloy by gas bubbling process. Journal of Materials Research, 2015, 30, 825-832.	1.2	11
49	Microstructure and mechanical properties of Mg–3.0Y–2.5Nd–1.0Gd–xZn–0.5Zr alloys produced by metallic and sand mold casting. Journal of Materials Research, 2017, 32, 3191-3201.	1.2	11
50	Effect of Zn Addition on the Microstructure and Mechanical Properties of Cast Mg–10Gd–3.5Er–xZn–0.5Zr Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1505-1517.	1.5	11
51	Microstructure evolution of semi-solid Mg-14Al-0.5Mn alloys during isothermal heat treatment. Transactions of Nonferrous Metals Society of China, 2010, 20, 1244-1248.	1.7	10
52	Influence of pouring temperature on solidification behavior, microstructure and mechanical properties of sand-cast Mg-10Gd-3Y-0.4Zr alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 363-374.	1.7	10
53	Effect of Mn addition on microstructure and mechanical properties of cast Al–2Li–2Cu–0.8Mg–0.4Zn–0.2Zr alloy. Journal of Materials Research, 2016, 31, 250-258.	1.2	10
54	Effects of processing parameters and addition of flame-retardant into moulding sand on the microstructure and fluidity of sand-cast magnesium alloy Mg-10Gd-3Y-0.5Zr. Journal of Materials Science and Technology, 2017, 33, 558-566.	5.6	10

#	Article	IF	CITATIONS
55	Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand. China Foundry, 2017, 14, 128-137.	0.5	10
56	Effects of Al and Y Addition on Microstructures and Mechanical Properties of As ast Mg–14Li Based Alloy. Advanced Engineering Materials, 2019, 21, 1800755.	1.6	10
57	Role of Cu on the mechanical properties and microstructures evolution of Al-xCu-1Li-0.4Mg–1Zn-0.1Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139833.	2.6	10
58	Effects of processing parameters on microstructure of semi-solid slurry of AZ91D magnesium alloy prepared by gas bubbling. Transactions of Nonferrous Metals Society of China, 2015, 25, 2181-2187.	1.7	9
59	Dry wear behavior of rheo-casting Al–16Si–4Cu–0.5Mg alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 2818-2829.	1.7	9
60	Addressing the abnormal grain coarsening during post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy. Materials Characterization, 2021, 176, 111125.	1.9	9
61	Role of Ti in the microstructure evolutions and mechanical properties of cast Al-2.5Li-1.5Cu-1Zn-0.5Mg(â^'0.2Zr) alloys. Journal of Alloys and Compounds, 2022, 899, 163320.	2.8	9
62	Gradient based fast mode and depth decision for high efficiency intra frame video coding. , 2015, , .		8
63	Effect of mold temperature on microstructure and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy. Journal of Materials Research, 2017, 32, 4206-4218.	1.2	7
64	Formation of non-dendritic microstructures in preparation of semi-solid Mg-RE alloys slurries: Roles of RE content and cooling rate. Journal of Materials Processing Technology, 2020, 279, 116545.	3.1	7
65	Effect of Ca content and rheo-squeeze casting parameters on microstructure and mechanical properties of AZ91â^'1Ceâ^'xCa alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 1572-1586.	1.7	7
66	Research on the post-weld heat treatment of TIG repair welded joint of sand-cast Mg-Y-RE-Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141577.	2.6	7
67	Microstructure and stress corrosion cracking resistance of Al-6.5Zn-2Cu-1.5Mg-0.05Ti alloy modified by Cr addition. Materials Characterization, 2022, 183, 111621.	1.9	7
68	Effects of Ca content on the microstructure of semisolid Mg–13Al alloy produced via isothermal heat treatment. Journal of Alloys and Compounds, 2012, 534, 52-58.	2.8	6
69	Effects of minor Y addition on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy. Journal of Materials Research, 2017, 32, 3712-3722.	1.2	6
70	An Improved Particle Filter Based on Bird Swarm Algorithm., 2017,,.		6
71	Effect of heat treatments on microstructure and mechanical properties of sand cast Al–2Li–2Cu–0.5Mg–0.2Sc–0.2Zr alloy. Transactions of Nonferrous Metals Society of China, 2022, 32, 411-423.	1.7	6
72	Semi-solid slurry preparation, rheo-die casting and rheo-squeeze casting of an AZ91–2Ca–1.5Ce ignition-proof magnesium alloy by gas-bubbling process. Journal of Materials Research, 2017, 32, 677-686.	1.2	5

#	Article	lF	Citations
73	Effects of pressure and aging treatment on microstructures and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy. Journal of Materials Research, 2018, 33, 758-771.	1.2	5
74	Effect of refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 1375-1382.	1.7	5
75	Microstructure and mechanical properties of casting Al-3Li-2Mg-1Zn-0.1Zr alloys modified by Sc additions. Journal of Alloys and Compounds, 2021, 885, 161106.	2.8	5
76	Microstructural Characteristics and Mechanical Properties of Cast Mg–3Nd–3Gd–xZn–0.5Zr Alloys. Acta Metallurgica Sinica (English Letters), 2022, 35, 922-940.	1.5	5
77	On the microstructural characteristics and mechanical properties of Alâ^2Liâ^2Cuâ^20.5ÂMg alloy: the role of Yb additions. Journal of Materials Science, 2022, 57, 3688-3708.	1.7	5
78	Fast AVS to HEVC transcoding based on ROI detection using visual characteristics. , 2014, , .		4
79	Influence of different casting processes on high cycle fatigue behavior of Mg–10Gd–3Y–0.5Zr alloy. Journal of Materials Research, 2016, 31, 2538-2548.	1.2	4
80	Rate control model for high dynamic range video. , 2017, , .		3
81	Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al–3Li–2Cu–0.2Zr Alloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 1243-1251.	1.5	3
82	Small group people behavior analysis based on temporal recursive trajectory identification., 2015,,.		2
83	Fast depth decision with enlarged coding block sizes for HEVC intra coding of 4K ultra-HD video. , 2015, , .		2
84	Effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting hypereutectic Al–22Si–0.4Mg alloy. Journal of Materials Research, 2016, 31, 3629-3637.	1.2	2
85	Improved Post-Weld Heat Treatment for Argon TIG Welded Joint of a New Al – Zn – Mg – Cu Alloy. Metal Science and Heat Treatment, 2018, 60, 399-402.	0.2	2
86	Variation in the microstructure and mechanical properties of permanent mold cast Al–3Li–2Mg–0.1Zr alloy with Zn addition. Journal of Materials Research, 2021, 36, 2071-2082.	1.2	1
87	Multilevel DCT-based zerotree image coding. , 2014, , .		0
88	Wavelet transform-based downsampling for low bit-rate video coding. , 2015, , .		0
89	Particle Filter and Its Application in the Integrated Train Speed Measurement. Journal of Shanghai Jiaotong University (Science), 2019, 24, 130-136.	0.5	0