
Zdenka Bendova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7728-7733.	3.3	490
2	The rat suprachiasmatic nucleus is a clock for all seasons Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7754-7758.	3.3	168
3	Insight into molecular core clock mechanism of embryonic and early postnatal rat suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6231-6236.	3.3	132
4	Postnatal ontogenesis of the circadian clock within the rat liver. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1224-R1229.	0.9	107
5	Spontaneous rhythm in c-Fos immunoreactivity in the dorsomedial part of the rat suprachiasmatic nucleus. Brain Research, 1998, 801, 254-258.	1.1	78
6	Expression of Clock and Clock-Driven Genes in the Rat Suprachiasmatic Nucleus during Late Fetal and Early Postnatal Development. Journal of Biological Rhythms, 2006, 21, 140-148.	1.4	66
7	Setting the biological time in central and peripheral clocks during ontogenesis. FEBS Letters, 2006, 580, 2836-2842.	1.3	58
8	Memory on long but not on short days is stored in the rat suprachiasmatic nucleus. Neuroscience Letters, 1995, 200, 191-194.	1.0	45
9	Circadian rhythms of melatonin and peripheral clock gene expression in idiopathic REM sleep behavior disorder. Sleep Medicine, 2018, 52, 1-6.	0.8	43
10	A Clockwork Organ. Biological Chemistry, 2000, 381, 793-800.	1.2	42
11	Potentiation of Inhibitory Synaptic Transmission by Extracellular ATP in Rat Suprachiasmatic Nuclei. Journal of Neuroscience, 2013, 33, 8035-8044.	1.7	37
12	Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Frontiers in Pharmacology, 2018, 9, 192.	1.6	30
13	Development of the light sensitivity of the clock genes <i>Period1</i> and <i>Period2</i> , and immediateâ€early gene <i>câ€fos</i> within the rat suprachiasmatic nucleus. European Journal of Neuroscience, 2009, 29, 490-501.	1.2	27
14	Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience, 2009, 159, 599-609.	1.1	24
15	Acute morphine affects the rat circadian clock via rhythms of phosphorylated <scp>ERK</scp> 1/2 and <scp>GSK</scp> 31² kinases and <scp><i>P</i></scp> <i>er1</i> expression in the rat suprachiasmatic nucleus. British Journal of Pharmacology, 2015, 172, 3638-3649.	2.7	24
16	Development of circadian rhythmicity and photoperiodic response in subdivisions of the rat suprachiasmatic nucleus. Developmental Brain Research, 2004, 148, 105-112.	2.1	22
17	The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochemistry International, 2012, 61, 43-47.	1.9	18
18	The Rat Circadian Clockwork and its Photoperiodic Entrainment During Development. Chronobiology International, 2006, 23, 237-243.	0.9	16

Zdenka Bendova

#	Article	IF	CITATIONS
19	Ontogenesis of photoperiodic entrainment of the molecular core clockwork in the rat suprachiasmatic nucleus. Brain Research, 2005, 1064, 83-89.	1.1	15
20	DISP3, a Sterol-Sensing Domain-Containing Protein that Links Thyroid Hormone Action and Cholesterol Metabolism. Molecular Endocrinology, 2009, 23, 520-528.	3.7	15
21	The Effect of Chronic Morphine or Methadone Exposure and Withdrawal on Clock Gene Expression in the Rat Suprachiasmatic Nucleus and AA-NAT Activity in the Pineal Gland. Physiological Research, 2016, 65, 517-525.	0.4	15
22	Expression and light sensitivity of clock genes <i>Per1</i> and <i>Per2</i> and immediateâ€early gene <i>câ€fos</i> within the retina of early postnatal Wistar rats. Journal of Comparative Neurology, 2010, 518, 3630-3644.	0.9	14
23	Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. Journal of Neuroscience Research, 2016, 94, 99-108.	1.3	13
24	Chronotype and social jet-lag in relation to body weight, apetite, sleep quality and fatigue. Biological Rhythm Research, 2021, 52, 1205-1216.	0.4	13
25	Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors. Frontiers in Molecular Neuroscience, 2018, 11, 382.	1.4	11
26	The day/night difference in the circadian clock's response to acute lipopolysaccharide and the rhythmic Stat3 expression in the rat suprachiasmatic nucleus. PLoS ONE, 2018, 13, e0199405.	1.1	11
27	The Effect of a Common Daily Schedule on Human Circadian Rhythms During the Polar Day in Svalbard: A Field Study. Journal of Circadian Rhythms, 2019, 17, 9.	2.9	10
28	Constant Light in Critical Postnatal Days Affects Circadian Rhythms in Locomotion and Gene Expression in the Suprachiasmatic Nucleus, Retina, and Pineal Gland Later in Life. Biomedicines, 2020, 8, 579.	1.4	9
29	Social defeat stress affects resident's clock gene and bdnf expression in the brain. Stress, 2021, 24, 206-212.	0.8	9
30	Melatonin entrainment of the circadian N-acetyltransferase rhythm in the newborn rat pineal gland. Journal of Pineal Research, 1997, 23, 136-141.	3.4	8
31	Delayed Effect of the Light Pulse on Phosphorylated ERK1/2 and GSK3Î ² Kinases in the Ventrolateral Suprachiasmatic Nucleus of Rat. Journal of Molecular Neuroscience, 2015, 56, 371-376.	1.1	7
32	Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiology International, 2016, 33, 141-150.	0.9	6
33	Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors. International Journal of Molecular Sciences, 2020, 21, 3184.	1.8	4
34	Prenatal exposure to lipopolysaccharide induces changes in the circadian clock in the SCN and AA-NAT activity in the pineal gland. Brain Research, 2020, 1743, 146952.	1.1	4
35	Maternal morphine intake during pregnancy and lactation affects the circadian clock of rat pups. Brain Research Bulletin, 2021, 177, 143-154.	1.4	4
36	Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Archives of Biochemistry and Biophysics, 2022, 722, 109213.	1.4	4

Zdenka Bendova

#	Article	IF	CITATIONS
37	The dayâ€night differences in <scp>ERK1</scp> /2, <scp>GSK3β</scp> activity and <scp>câ€Fos</scp> levels in the brain, and the responsiveness of various brain structures to morphine. Journal of Comparative Neurology, 2020, 528, 2471-2495.	0.9	3
38	Circadian Regulation of GluA2 mRNA Processing in the Rat Suprachiasmatic Nucleus and Other Brain Structures. Molecular Neurobiology, 2021, 58, 439-449.	1.9	3
39	The effect of the cannabinoid receptor agonist and antagonist on the light-induced changes in the suprachiasmatic nucleus of rats. Neuroscience Letters, 2019, 703, 49-52.	1.0	2
40	Diurnal and seasonal differences in cardiopulmonary response to exercise in morning and evening chronotypes. Chronobiology International, 2021, 38, 1661-1672.	0.9	2
41	Erasing day/night differences in light intensity and spectrum affect biodiversity and the health of mammals by confusing the circadian clock. Lynx, 2017, 49, 139-161.	0.2	2
42	The Circadian Rhythms of STAT3 in the Rat Pineal Gland and Its Involvement in Arylalkylamine-N-Acetyltransferase Regulation. Life, 2021, 11, 1105.	1.1	2
43	Circadian rhythms of locomotor activity in rats: Data on the effect of morphine administered from the early stages of embryonic development until weaning. Data in Brief, 2022, 40, 107812.	0.5	1
44	Circadian rhythm and photic induction of the Câ€ŧerminal splice variant of NMDAR1 subunit in the rat suprachiasmatic nucleus. Synapse, 2014, 68, 85-88.	0.6	0
45	Circadian system disturbances in Huntington's disease – implications for light therapy. Ceska A Slovenska Neurologie A Neurochirurgie, 2019, 82/115, 289-294.	0.0	0