Chiâ€'Hui Tsou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685195/publications.pdf

Version: 2024-02-01

361413 233421 2,154 58 20 45 citations h-index g-index papers 60 60 60 2407 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polymer Bulletin, 2022, 79, 3847-3866.	3.3	36
2	Thermal properties and hydrophilicity of antibacterial poly(phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes. Journal of Polymer Research, 2022, 29, 1.	2.4	18
3	High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol. Progress in Organic Coatings, 2022, 166, 106805.	3.9	16
4	Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite. Current Research in Green and Sustainable Chemistry, 2022, 5, 100314.	5.6	16
5	The preparation and performance of poly(butylene adipate) terephthalate/corn stalk composites. Current Research in Green and Sustainable Chemistry, 2022, 5, 100329.	5.6	15
6	Characterization of antibacterial nanocomposites of polyethylene terephthalate filled with nanosilver-doped carbon black. Polymers and Polymer Composites, 2021, 29, 797-806.	1.9	13
7	Preparation of Antibacterial Nanocomposites of Zinc Oxide-Doped Graphene Reinforced Polypropylene with High Comprehensive Properties. Nano, 2021, 16, 2150026.	1.0	17
8	Preparation and characterization of bio-based green renewable composites from poly(lactic acid) reinforced with corn stover. Journal of Polymer Research, 2021, 28, 1.	2.4	15
9	The Characterization of Nanocomposites from Poly(lactic acid) with Nanocarbon Black as the Reinforcement. , $2021, $, .		O
10	Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites. Iranian Polymer Journal (English Edition), 2021, 30, 1251-1262.	2.4	34
11	Thermal Properties and Barrier Performance of Antibacterial High-Density Polyethylene Reinforced with Carboxyl Graphene-Grafted Modified High-Density Polyethylene. Industrial & Engineering Chemistry Research, 2021, 60, 12911-12922.	3.7	21
12	Barrier Properties and Hydrophobicity of Biodegradable Poly(lactic acid) Composites Reinforced with Recycled Chinese Spirits Distiller's Grains. Polymers, 2021, 13, 2861.	4.5	13
13	Barrier performance and biodegradability of antibacterial poly(butylene adipate-co-terephthalate) nanocomposites reinforced with a new MWCNT-ZnO nanomaterial. Nanotechnology, 2021, 32, 485706.	2.6	20
14	Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polymer Bulletin, 2020, 77, 3325-3347.	3.3	11
15	Antibacterial Nanocomposites of Polypropylene Modified with Silver-Decorated Multiwalled Carbon Nanotubes. Nano, 2020, 15, 2050112.	1.0	17
16	Polyurethane/Nanosilver-Doped Halloysite Nanocomposites: Thermal, Mechanical Properties, and Antibacterial Properties. Polymers, 2020, 12, 2729.	4.5	13
17	Evaluating distillers grains as bio-fillers for high-density polyethylene. Journal of Polymer Research, 2020, 27, 1.	2.4	33
18	Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties. Chinese Journal of Polymer Science (English Edition), 2020, 38, 898-907.	3.8	40

#	Article	IF	CITATIONS
19	Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance. Nanotechnology, 2020, 31, 385703.	2.6	24
20	Preparation and Physical Properties of Polyethylene/Carbon Nanotubes/Nanosilver Composite. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012120.	0.6	0
21	Characterizing Attapulgite-Reinforced Nanocomposites of Poly(lactic acid). Polymer Science - Series A, 2020, 62, 732-743.	1.0	12
22	Synthetic Environmentally Friendly Castor Oil Based-Polyurethane with Carbon Black as a Microphase Separation Promoter. Polymers, 2019, 11, 1333.	4.5	22
23	Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications. Journal of Polymer Research, 2019, 26, 1.	2.4	29
24	Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. Journal of Polymer Research, 2019, 26, 1.	2.4	53
25	Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 2019, 160, 265-271.	3.8	61
26	Innovative Plasma Process of Grafting Methyl Diallyl Ammonium Salt onto Polypropylene to Impart Antibacterial and Hydrophilic Surface Properties. Industrial & Engineering Chemistry Research, 2018, 57, 2537-2545.	3.7	44
27	Fabrication, characterization, cytocompatibility, and biological activity of lemon fiber-filled polyester composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 151-160.	3.4	3
28	Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polymers and Polymer Composites, 2018, 26, 446-453.	1.9	13
29	Organocatalyzed ring-opening copolymerization of α-bromo-γ-butyrolactone with Îμ-caprolactone for the synthesis of functional aliphatic polyesters – pre-polymers for graft copolymerization. Designed Monomers and Polymers, 2018, 21, 193-201.	1.6	4
30	Polyester-based green renewable eco-composites by solar energy tube processing: characterization and assessment of properties. Journal of Polymer Research, 2018, 25, 1.	2.4	5
31	Isothermal Crystallization Kinetics Effect on the Tensile Properties of PLA/PTT Polymer Composites. Strength of Materials, 2017, 49, 171-179.	0.5	2
32	Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units. Polymer Bulletin, 2017, 74, 1121-1143.	3.3	16
33	Antibacterial Property and Cytotoxicity of a Poly(lactic acid)/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite. Polymers, 2017, 9, 100.	4.5	49
34	Preparation and characterization of biodegradable polyurethanes composites filled with silver nanoparticles-decorated graphene. Journal of Polymer Research, 2016, 23, 1.	2.4	6
35	Preparation and characterization of biodegradable polyurethanes composites containing thermally treated attapulgite nanorods. Polymer Bulletin, 2016, 73, 3119-3141.	3.3	3
36	Crystallization behavior and tensile property of poly(trimethyleneterephthalate)/styrene-ethylene-buthylene-styrene composites. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 474-480.	1.0	1

#	Article	IF	CITATIONS
37	Synthesis and properties of antibacterial polyurethane with novel Bis(3-pyridinemethanol) silver chain extender. Polymer, 2016, 85, 96-105.	3.8	47
38	Study of the synthesis and properties of polyurethane containing pyridyl units for shape memory. Polymer Bulletin, 2016, 73, 1303-1320.	3.3	5
39	Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites. Bio-Medical Materials and Engineering, 2015, 26, S147-S154.	0.6	8
40	The Properties and a New Preparation of Ethylene Propylene Diene Monomer/Montmorillonite Nanocomposites. Polymers and Polymer Composites, 2015, 23, 181-190.	1.9	3
41	Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477, 93-100.	8.2	278
42	Synthesis of biodegradable polycaprolactone/polyurethane by curing with H2O. Polymer Bulletin, 2015, 72, 1545-1561.	3.3	12
43	Biodegradable composition of poly(lactic acid) from renewable wood flour. Polymer Science - Series B, 2015, 57, 473-480.	0.8	34
44	Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials, 2014, 7, 5617-5632.	2.9	66
45	New Composition of Maleic-Anhydride-Grafted Poly(Lactic Acid)/Rice Husk with Methylenediphenyl Diisocyanate. Medziagotyra, 2014, 20, .	0.2	15
46	The effects of silver nitrate on the structure and properties of polyurethanes containing pyridyl units. Polymer Bulletin, 2014, 71, 2749-2767.	3.3	5
47	Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying <i>d</i> -Spacing. Chemistry of Materials, 2014, 26, 2983-2990.	6.7	644
48	Ultrahigh molecular weight polyethylene fibers prepared using conical dies with varying dimensions. Polymer Engineering and Science, 2013, 53, 1910-1919.	3.1	2
49	Synthesis and properties of biodegradable polycaprolactone/polyurethanes byÂusing 2,6-pyridinedimethanol as a chain extender. Polymer Degradation and Stability, 2013, 98, 643-650.	5.8	66
50	Preparation and physicochemical properties of digested collagen fragments with varying molecular weights. Journal of Polymer Research, 2012, 19, 1.	2.4	0
51	Drawing and ultimate tensile properties of nylon 6/nylon 6 clay composite fibers. Polymer Engineering and Science, 2012, 52, 1348-1355.	3.1	8
52	Preparation and physical properties of meltâ€blown nonwovens of biodegradable PLA/acetyl tributyl citrate/FePol copolyester blends. Journal of Applied Polymer Science, 2012, 125, E158.	2.6	6
53	The compatible and mechanical properties of biodegradable poly(Lactic Acid)/ethylene glycidyl methacrylate copolymer blends. Journal of Polymer Research, 2012, 19, 1.	2.4	20
54	Ultradrawing properties of ultrahighâ€molecular weight polyethylene/functionalized carbon nanotube fibers and transmittance properties of their gel solutions. Polymer Engineering and Science, 2011, 51, 2552-2563.	3.1	17

#	ARTICLE	IF	CITATIONS
55	Compatible and crystallization properties of poly(lactic acid)/poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock	10.Tf 50 7	742 Td (ad <mark>ipa</mark>
56	Compatible and tearing properties of poly(lactic acid)/poly(ethylene glutaricâ€∢i>coâ€terephthalate) copolyester blends. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 913-920.	2.1	13
57	Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic) Tj ETQq1 1 0.784314 rgBT /Overlo	ock 10 Tf 5	0 662 Td (ac
58	A New Application of Hollow Nanosilica Added to Modified Polypropylene to Prepare Nanocomposite Films. Nano, 0, , 2150117.	1.0	11