Tijl De Bie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3685019/publications.pdf

Version: 2024-02-01

623734 395702 1,265 47 14 33 citations h-index g-index papers 49 49 49 1777 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	EvalNE: A framework for network embedding evaluation. SoftwareX, 2022, 17, 100997.	2.6	2
2	An Empirical Evaluation of Network Representation Learning Methods. Big Data, 2022, , .	3.4	1
3	Evaluating Representation Learning and Graph Layout Methods for Visualization. IEEE Computer Graphics and Applications, 2022, 42, 19-28.	1.2	O
4	Conditional t-SNE: more informative t-SNE embeddings. Machine Learning, 2021, 110, 2905-2940.	5.4	15
5	Mining explainable local and global subgraph patterns with surprising densities. Data Mining and Knowledge Discovery, 2021, 35, 321-371.	3.7	2
6	ALPINE: Active Link Prediction Using Network Embedding. Applied Sciences (Switzerland), 2021, 11, 5043.	2.5	4
7	Stable topological signatures for metric trees through graph approximations. Pattern Recognition Letters, 2021, 147, 85-92.	4.2	2
8	Opinion dynamics with backfire effect and biased assimilation. PLoS ONE, 2021, 16, e0256922.	2.5	7
9	Sigmoidal NMFD: Convolutional NMF with Saturating Activations for Drum Mixture Decomposition. Electronics (Switzerland), 2021, 10, 284.	3.1	4
10	The KL-Divergence Between a Graph Model and its Fair I-Projection as a Fairness Regularizer. Lecture Notes in Computer Science, 2021, , 351-366.	1.3	4
11	FONDUE: A Framework for Node Disambiguation and Deduplication Using Network Embeddings. Applied Sciences (Switzerland), 2021, 11, 9884.	2.5	3
12	Interactive visual data exploration with subjective feedback: an information-theoretic approach. Data Mining and Knowledge Discovery, 2020, 34, 21-49.	3.7	4
13	SIAS-miner: mining subjectively interesting attributed subgraphs. Data Mining and Knowledge Discovery, 2020, 34, 355-393.	3.7	5
14	Block-Approximated Exponential Random Graphs. , 2020, , .		1
15	Relaxing the strong triadic closure problem for edge strength inference. Data Mining and Knowledge Discovery, 2020, 34, 611-651.	3.7	5
16	CSNE: Conditional Signed Network Embedding. , 2020, , .		7
17	Benchmarking Network Embedding Models for Link Prediction: Are We Making Progress?. , 2020, , .		10
18	Design and validation of an auditory biofeedback system for modification of running parameters. Journal on Multimodal User Interfaces, 2019, 13, 167-180.	2.9	17

#	Article	IF	Citations
19	SIMIT: Subjectively Interesting Motifs in Time Series. Entropy, 2019, 21, 566.	2.2	2
20	Subjectively interesting connecting trees and forests. Data Mining and Knowledge Discovery, 2019, 33, 1088-1124.	3.7	9
21	Discovering Interesting Cycles in Directed Graphs. , 2019, , .		4
22	SICA: subjectively interesting component analysis. Data Mining and Knowledge Discovery, 2018, 32, 949-987.	3.7	4
23	Interactive Visual Data Exploration with Subjective Feedback: An Information-Theoretic Approach. , 2018, , .		4
24	Subjectively Interesting Subgroup Discovery on Real-Valued Targets. , 2018, , .		5
25	A biofeedback music-sonification system for gait retraining. , 2018, , .		7
26	A Tool for Subjective and Interactive Visual Data Exploration. Lecture Notes in Computer Science, 2016, , 3-7.	1.3	3
27	Interactive Visual Data Exploration with Subjective Feedback. Lecture Notes in Computer Science, 2016, , 214-229.	1.3	7
28	Subjectively Interesting Component Analysis. , 2016, , .		7
29	SuMoTED: An intuitive edit distance between rooted unordered uniquely-labelled trees. Pattern Recognition Letters, 2016, 79, 52-59.	4.2	7
30	P-N-RMiner: a generic framework for mining interesting structured relational patterns. International Journal of Data Science and Analytics, 2016, 1, 61-76.	4.1	6
31	Subjective interestingness of subgraph patterns. Machine Learning, 2016, 105, 41-75.	5. 4	22
32	Subjectively interesting alternative clusterings. Machine Learning, 2015, 98, 31-56.	5 . 4	6
33	Automatic Chord Estimation from Audio: A Review of the State of the Art. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22, 556-575.	5.8	47
34	Interesting pattern mining in multi-relational data. Data Mining and Knowledge Discovery, 2014, 28, 808-849.	3.7	33
35	Understanding Effects of Subjectivity in Measuring Chord Estimation Accuracy. IEEE Transactions on Audio Speech and Language Processing, 2013, 21, 2607-2615.	3.2	25
36	RESEARCH METHODS IN THE AGE OF DIGITAL JOURNALISM. Digital Journalism, 2013, 1, 102-116.	4.2	63

#	Article	IF	Citations
37	Subjective Interestingness in Exploratory Data Mining. Lecture Notes in Computer Science, 2013, , 19-31.	1.3	28
38	Using Online Chord Databases to Enhance Chord Recognition. Journal of New Music Research, 2011, 40, 139-152.	0.8	5
39	An information theoretic framework for data mining. , 2011, , .		52
40	A framework for mining interesting pattern sets. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2011, 12, 92-100.	4.0	13
41	Maximum entropy models and subjective interestingness: an application to tiles in binary databases. Data Mining and Knowledge Discovery, 2011, 23, 407-446.	3.7	96
42	The Structure of the EU Mediasphere. PLoS ONE, 2010, 5, e14243.	2.5	23
43	The Conditionâ€Dependent Transcriptional Network in <i>Escherichia coli</i> Annals of the New York Academy of Sciences, 2009, 1158, 29-35.	3.8	4
44	DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biology, 2009, 10, R27.	9.6	52
45	Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology, 2006, 7, R37.	9.6	89
46	The Evolution of Mammalian Gene Families. PLoS ONE, 2006, 1, e85.	2.5	285
47	Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Research, 2005, 15, 1153-1160.	5.5	259