Gregorio Cadenas-pliego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684903/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Foliar Application of Copper Nanoparticles Increases the Fruit Quality and the Content of Bioactive Compounds in Tomatoes. Applied Sciences (Switzerland), 2018, 8, 1020.	1.3	158
2	Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences, 2019, 20, 162.	1.8	143
3	Synthesis of Copper Nanoparticles by Thermal Decomposition and Their Antimicrobial Properties. Journal of Nanomaterials, 2014, 2014, 1-5.	1.5	128
4	Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. Plants, 2019, 8, 151.	1.6	125
5	Application of nanoelements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 013001.	0.7	110
6	Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants. Plants, 2019, 8, 355.	1.6	105
7	Effects of Chitosan–PVA and Cu Nanoparticles on the Growth and Antioxidant Capacity of Tomato under Saline Stress. Molecules, 2018, 23, 178.	1.7	102
8	The Application of Selenium and Copper Nanoparticles Modifies the Biochemical Responses of Tomato Plants under Stress by Alternaria solani. International Journal of Molecular Sciences, 2019, 20, 1950.	1.8	98
9	Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress. Molecules, 2019, 24, 3030.	1.7	90
10	Chitosan-PVA and Copper Nanoparticles Improve Growth and Overexpress the SOD and JA Genes in Tomato Plants under Salt Stress. Agronomy, 2018, 8, 175.	1.3	86
11	The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 2019, 245, 82-89.	1.7	67
12	Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules, 2017, 22, 926.	1.7	50
13	Effect of Three Nanoparticles (Se, Si and Cu) on the Bioactive Compounds of Bell Pepper Fruits under Saline Stress. Plants, 2021, 10, 217.	1.6	48
14	Synthesis of Copper Nanoparticles Using Mixture of Allylamine and Polyallylamine. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	44
15	Impact of Carbon Nanomaterials on the Antioxidant System of Tomato Seedlings. International Journal of Molecular Sciences, 2019, 20, 5858.	1.8	44
16	Oxidation of Copper Nanoparticles Protected with Different Coatings and Stored under Ambient Conditions. Journal of Nanomaterials, 2018, 2018, 1-8.	1.5	42
17	Form of Silica Improves Yield, Fruit Quality and Antioxidant Defense System of Tomato Plants under Salt Stress. Agriculture (Switzerland), 2020, 10, 367.	1.4	39
18	Reactivity of Dithiazinanes towards BH ₃ , BD ₃ and BF ₃ . New Heterocycles: 5,5â€Dimethylâ€1,3â€dithiaâ€5â€azoniaâ€4â€boratacyclohexane and 6,6â€Dideuterioâ€5â€methylâ€5[D ₁]methylâ€1,3â€dithiaâ€5azoniaâ€4â€boratacyclohexane. A	Method for	the ³⁶

Dimethylation and Monodeuteriomethylation of Primary Amines. Chemische Berichte, 1993, 126, 863-867.

#	Article	IF	CITATIONS
19	Study of three different families of water-soluble copolymers: synthesis, characterization and viscoelastic behavior of semidilute solutions of polymers prepared by solution polymerization. Polymer, 2004, 45, 1993-2000.	1.8	35
20	High- <i>T</i> _g Functional Aromatic Polymers. Macromolecules, 2015, 48, 1026-1037.	2.2	34
21	New chiral heterocycles: 5-[(r)-(+)-1′-methylbenzyyl-1,3,5-dithiazine and 3-7-di-[(R)-(+)-1′-methylbenzyu-3-7-diaza-1,5-dithiacyclooctane. Conformational studies and their reactions with borane Tetrahedron: Asymmetry, 1994, 5, 633-640.	1.8	33
22	Optical and morphological properties of chemically synthesized poly3-octylthiophene thin films. Thin Solid Films, 2005, 490, 189-195.	0.8	32
23	NEW PERHYDRODITHIAZINES, NMR AND X-RAY DIFFRACTION STUDIES. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 81, 111-123.	0.8	29
24	Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf 5	50,542 Td (ad
25	Seed Priming with Carbon Nanomaterials to Modify the Germination, Growth, and Antioxidant Status of Tomato Seedlings. Agronomy, 2020, 10, 639.	1.3	29
26	Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	28
27	(Fluorenyl)titanium Triisopropoxide and Bis(fluorenyl)titanium Diisopropoxide:  A Facile Synthesis, Molecular Structure, and Catalytic Activity in Styrene Polymerization. Organometallics, 2002, 21, 3094-3099.	1.1	27
28	Green Synthesis of Copper Nanoparticles Using Cotton. Polymers, 2021, 13, 1906.	2.0	27
29	N-BH3 adducts of trialkyl-1,3,5-triazacyclohexanes with stable stereogenic nitrogen atoms, stereochemical study. Tetrahedron: Asymmetry, 1995, 6, 1585-1592.	1.8	26
30	Melt-Mixed Thermoplastic Nanocomposite Containing Carbon Nanotubes and Titanium Dioxide for Flame Retardancy Applications. Polymers, 2019, 11, 1204.	2.0	25
31	Impact of Silicon Nanoparticles on the Antioxidant Compounds of Tomato Fruits Stressed by Arsenic. Foods, 2019, 8, 612.	1.9	25
32	A New Lithium 5-Methyl-1,3-dithia-5-azacyclohex-2-ylborate —5-Borane and Two Dimeric 5-Methyl-1,3-dithia-5-azacyclohex-2-yllithium Compounds — Stereochemistry and Reactivity. Chemische Berichte, 1997, 130, 813-817.	0.2	22
33	Foliar Application of Cu Nanoparticles Modified the Content of Bioactive Compounds in Moringa oleifera Lam. Agronomy, 2018, 8, 167.	1.3	22
34	Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environmental Science and Pollution Research, 2022, 29, 34147-34163.	2.7	22
35	Surface Modification of Graphene Nanoplatelets by Organic Acids and Ultrasonic Radiation for Enhance Uremic Toxins Adsorption. Materials, 2019, 12, 715.	1.3	20
36	Preparation of bifluorenes via the synthesis and thermal decomposition of fluorenyltitanium(IV) trichlorides. Molecular and crystal structure of 9,9′-bis(trimethylsilyl)-bi-9,9′-fluorene. Tetrahedron, 1999, 55, 1639-1646.	1.0	19

#	Article	IF	CITATIONS
37	Graphene Nanoplatelets Modified with Amino-Groups by Ultrasonic Radiation of Variable Frequency for Potential Adsorption of Uremic Toxins. Nanomaterials, 2019, 9, 1261.	1.9	19
38	Effect of Modified Hexagonal Boron Nitride Nanoparticles on the Emulsion Stability, Viscosity and Electrochemical Behavior of Nanostructured Acrylic Coatings for the Corrosion Protection of AISI 304 Stainless Steel. Coatings, 2020, 10, 488.	1.2	19
39	Antimicrobial Property of Polypropylene Composites and Functionalized Copper Nanoparticles. Polymers, 2021, 13, 1694.	2.0	18
40	SYNTHESIS AND X-RAY DIFFRACTION STUDY OF 1,5-DITHIA-3,7-DIAZABICYCLO[3.3.1]NONANE AND ITS N-BORANE ADDUCTS. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 84, 9-15.	0.8	17
41	Synthesis and characterization of thermo-insensitive, water-soluble associative polymers with good thickening properties at low and high temperatures. Journal of Polymer Research, 2014, 21, 1.	1.2	17
42	Exfoliation, reduction, hybridization and polymerization mechanisms in one-step microwave-assist synthesis of nanocomposite nylon-6/graphene. Polymer, 2018, 146, 73-81.	1.8	17
43	Title is missing!. International Journal of Thermophysics, 2003, 24, 1061-1071.	1.0	13
44	Morphology and chain mobility of reactive blend nanocomposites of PPâ€EVA/Clay. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
45	Synthesis of Nylon 6/Modified Carbon Black Nanocomposites for Application in Uric Acid Adsorption. Materials, 2020, 13, 5173.	1.3	13
46	Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. Nanomaterials, 2021, 11, 1080.	1.9	13
47	Thermal degradation of poly(vinyl chloride) synthesized with a titanocene catalyst. Polymer Degradation and Stability, 2006, 91, 499-503.	2.7	12
48	Synthesis of Copper Nanoparticles Stabilized with Organic Ligands and Their Antimicrobial Properties. Polymers, 2021, 13, 2846.	2.0	12
49	Si2Me4-bridged zirconocene dichlorides: crystal and molecular structure of meso-Si2Me4(3-SiMe3–C9H5)2ZrCl2. Journal of Organometallic Chemistry, 1999, 585, 18-25.	0.8	11
50	Characterization and rheological properties of dilute-solutions of three different families of water-soluble copolymers prepared by solution polymerization. Macromolecular Research, 2004, 12, 451-458.	1.0	11
51	Synthesis and Thermomechanical Characterization of Nylon 6/Cu Nanocomposites Produced by an Ultrasound-Assisted Extrusion Method. Advances in Materials Science and Engineering, 2018, 2018, 1-10.	1.0	11
52	Enhancement of the thermal conductivity of polypropylene with low loadings of CuAg alloy nanoparticles and graphene nanoplatelets. Materials Today Communications, 2019, 21, 100695.	0.9	11
53	Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye. Nanomaterials, 2021, 11, 2477.	1.9	11
54	Silicon Nanoparticles Improve the Shelf Life and Antioxidant Status of Lilium. Plants, 2021, 10, 2338.	1.6	11

#	Article	IF	CITATIONS
55	Green Flame-Retardant Composites Based on PP/TiO2/Lignin Obtained by Melt-Mixing Extrusion. Polymers, 2022, 14, 1300.	2.0	11
56	Novel supported catalysts for ethylene polymerization based on aluminohydride-zirconocene complexes. Journal of Molecular Catalysis A, 2009, 307, 98-104.	4.8	10
57	Microwave-assisted synthesis of poly(3-hexylthiophene) via direct oxidation with FeCl3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1441-1445.	1.7	9
58	Composites based on nylon 6/clinoptilolite by ultrasound-assisted extrusion for enhanced flame retardant and mechanical properties. Polymer Bulletin, 2022, 79, 1803-1819.	1.7	9
59	Nitric oxide modified growth, nutrient uptake and the antioxidant defense system in tomato seedlings stressed with arsenic. Theoretical and Experimental Plant Physiology, 2021, 33, 205-223.	1.1	9
60	Seed priming with ZnO nanoparticles promotes early growth and bioactive compounds of Moringa oleifera. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12546.	0.5	9
61	Synthesis, characterization and properties of functionalized styrene-maleimide copolymers. Polymer International, 2005, 54, 1626-1631.	1.6	8
62	Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers, 2021, 13, 1888.	2.0	8
63	Effect of Microwave Radiation on the Synthesis of Poly(3-hexylthiophene) and the Subsequent Photovoltaic Performance of CdS/P3HT Solar Cells. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	7
64	Non-woven fabrics based on Nylon 6/carbon black-graphene nanoplatelets obtained by melt-blowing for adsorption of urea, uric acid and creatinine. Materials Letters, 2022, 320, 132382.	1.3	7
65	Effect of carbon-based nanomaterials on Fusarium wilt in tomato. Scientia Horticulturae, 2022, 291, 110586.	1.7	6
66	Influence of Surfactant and Salt Concentration on the Rheological Properties of Three Different Microstructures of Associative Polyelectrolytes Obtained by Solution Polymerization. Journal of Modern Physics, 2014, 05, 1387-1396.	0.3	6
67	Poly(vinyl alcohol) obtained by hydrolysis of poly(vinyl silyl ethers) and poly(vinyl ethers) synthesized with indenyltitanium trichloride. Polymer Degradation and Stability, 2005, 90, 264-271.	2.7	5
68	Evaluation of catalyst leaching in silica supported zirconocene alumino hydride catalysts. Canadian Journal of Chemical Engineering, 2017, 95, 1124-1132.	0.9	5
69	Symmetry loss in piperidine and morpholine by nitrogen coordination Journal of Chemical Education, 1993, 70, 556.	1.1	4
70	Heterogeneous Ethylene and Alphaâ€Olefin Copolymerization Using Zirconocene Aluminohydride Complexes. Macromolecular Symposia, 2013, 325-326, 71-76.	0.4	4
71	Effects of Edaphic Fertilization and Foliar Application of Se and Zn Nanoparticles on Yield and Bioactive Compounds in Malus domestica L Horticulturae, 2022, 8, 542.	1.2	4
72	Heterogeneous Polymerization of Ethylene and 1â€Hexene with Me ₃ SiCp ₂ ZrH ₃ AlH ₂ /SiO ₂ Activated with MAO. Macromolecular Symposia, 2009, 283–284, 96-102.	0.4	3

#	Article	IF	CITATIONS
73	Concentration effect of N-isopropylacrylamide on viscoelastic properties of hydrosoluble thermo-thickening copolymers. Polymer Bulletin, 2017, 74, 4009-4021.	1.7	3
74	Synthesis and characterization of SWNTs/P3OT composites via in situ microwave-assisted polymerization. Journal of Materials Science: Materials in Electronics, 2015, 26, 7341-7350.	1.1	2
75	Complejo PVA-quitosán-nCu mejora el rendimiento y la respuesta de defensa en tomate. Revista Mexicana De Ciencias Agricolas, 2021, 12, 970-979.	0.0	2
76	Thermal degradation of PVC synthesized with a titanocene catalyst II. Complementary isothermal results. Polymer Degradation and Stability, 2007, 92, 1133-1140.	2.7	1
77	Use of chitosan-polyacrylic acid (CS-PAA) complex, chitosan-polyvinyl alcohol (CS-PVA) and chitosan hydrogels in greenhouses as a carrier for beneficial elements, nanoparticles, and microorganisms. Acta Horticulturae, 2020, , 1153-1160.	0.1	1
78	Syndiospecific Styrene Polymerization in Aliphatic Solvents Catalyzed by FluTi(O ⁱ Pr) ₃ /MAO: Study of Polymerization Conditions. Macromolecular Symposia, 2009, 283–284, 67-77.	0.4	0