
David Brian Fowler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684817/publications.pdf Version: 2024-02-01

DAVID REIAN FOULTER

#	Article	IF	CITATIONS
1	TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. Plant Physiology, 2003, 132, 1849-1860.	4.8	361
2	Understanding the Biochemical Basis of Temperature-Induced Lipid Pathway Adjustments in Plants. Plant Cell, 2015, 27, 86-103.	6.6	161
3	Photoperiod and Temperature Interactions Regulate Low-Temperature-Induced Gene Expression in Barley. Plant Physiology, 2001, 127, 1676-1681.	4.8	126
4	Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta, 2006, 224, 360-366.	3.2	124
5	TaVRT-2, a Member of the StMADS-11 Clade of Flowering Repressors, Is Regulated by Vernalization and Photoperiod in Wheat. Plant Physiology, 2005, 138, 2354-2363.	4.8	122
6	Low‶emperature Tolerance in Cereals: Model and Genetic Interpretation. Crop Science, 1999, 39, 626-633.	1.8	119
7	Influence of Vernalization and Photoperiod Responses on Cold Hardiness in Winter Cereals. Crop Science, 2001, 41, 1006-1011.	1.8	90
8	Freezing Injury and Root Development in Winter Cereals. Plant Physiology, 1983, 73, 773-777.	4.8	82
9	Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. Journal of Experimental Botany, 2008, 59, 2393-2402.	4.8	79
10	Cold Acclimation Threshold Induction Temperatures in Cereals. Crop Science, 2008, 48, 1147-1154.	1.8	77
11	Interactions among Factors Regulating Phenological Development and Acclimation Rate Determine Low-temperature Tolerance in Wheat. Annals of Botany, 2004, 94, 717-724.	2.9	73
12	Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Molecular Genetics and Genomics, 2009, 282, 141-152.	2.1	70
13	Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS ONE, 2016, 11, e0152185.	2.5	68
14	Crop Nitrogen Demand and Grain Protein Concentration of Spring and Winter Wheat. Agronomy Journal, 2003, 95, 260-265.	1.8	65
15	Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field. Plant Physiology, 2018, 176, 2376-2394.	4.8	55
16	Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiology, 2001, 127, 1676-81.	4.8	55
17	A Nuclear Magnetic Resonance Study of Water in Cold-acclimating Cereals. Plant Physiology, 1979, 63, 627-634.	4.8	43
18	Phenological development and expression of freezing resistance in spring and winter wheat under field conditions in north-west Iran. Field Crops Research, 2006, 97, 182-187.	5.1	40

DAVID BRIAN FOWLER

#	Article	IF	CITATIONS
19	Overwinter Lowâ€Temperature Responses of Cereals: Analyses and Simulation. Crop Science, 2014, 54, 2395-2405.	1.8	34
20	Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. Journal of Experimental Botany, 2018, 69, 1221-1234.	4.8	34
21	Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta, 2007, 226, 139-146.	3.2	31
22	Wheat Production in the High Winter Stress Climate of the Great Plains of North America—An Experiment in Crop Adaptation. Crop Science, 2012, 52, 11-20.	1.8	27
23	Exploring new alleles for frost tolerance in winter rye. Theoretical and Applied Genetics, 2017, 130, 2151-2164.	3.6	20
24	Yield Structure and Kernel Potential of Winter Wheat on the Canadian Prairies. Crop Science, 2006, 46, 1479-1487.	1.8	19
25	Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Molecular Biology, 2011, 75, 379-398.	3.9	19
26	Photoperiod and Temperature Interactions Regulate Low-Temperature-Induced Gene Expression in Barley. Plant Physiology, 2001, 127, 1676-1681.	4.8	18
27	Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2009, 60, 3575-3585.	4.8	18
28	lce segregation in the crown of winter cereals: Evidence for extraorgan and extratissue freezing. Plant, Cell and Environment, 2019, 42, 701-716.	5.7	15
29	Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environmental and Experimental Botany, 2009, 66, 46-53.	4.2	14
30	Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (<i>Triticum aestivum L.</i>) during Cold Acclimation. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	12
31	Modeling winter survival in cereals: An interactive tool. Crop Science, 2020, 60, 2408-2419.	1.8	12
32	Genomeâ€Wide Identification and Characterization of the Wheat Remorin (Ta REM) Family during Cold Acclimation. Plant Genome, 2019, 12, 180040.	2.8	11
33	Elucidating the biochemical basis of <i>trans</i> â€16:1 fatty acid change in leaves during cold acclimation in wheat. Plant-Environment Interactions, 2021, 2, 101-111.	1.5	4