
Kai Uwe Totsche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 2018, 181, 104-136.	1.1	567

2 Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-ray Diffraction and Mössbauer Spectroscopy. Environmental Science & Technology, 2008, 42, 7891-7897.	4.6	268
4	Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environmental Science & amp; Technology, 2011, 45, 527-533.	4.6	217
5	Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science, 2011, 53, 20-26.	2.6	186
6	Predominance of Cand. Patescibacteria in Groundwater Is Caused by Their Preferential Mobilization From Soils and Flourishing Under Oligotrophic Conditions. Frontiers in Microbiology, 2019, 10, 1407.	1.5	160
7	Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. Journal of Plant Nutrition and Soil Science, 2010, 173, 88-99.	1.1	143
8	Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material. Organic Geochemistry, 2005, 36, 1359-1377.	0.9	129
9	Dissolved Organic Matterâ€Enhanced Retention of Polycyclic Aromatic Hydrocarbons in Soil Miscible Displacement Experiments. Journal of Environmental Quality, 1997, 26, 1090-1100.	1.0	112
10	Calcite Biomineralization by Bacterial Isolates from the Recently Discovered Pristine Karstic Herrenberg Cave. Applied and Environmental Microbiology, 2012, 78, 1157-1167.	1.4	112
11	Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma, 2006, 136, 631-642.	2.3	110
12	Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. European Journal of Soil Science, 2007, 58, 918-931.	1.8	106
13	Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia, 2012, 55, 111-119.	0.5	98
14	How Deep Can Surface Signals Be Traced in the Critical Zone? Merging Biodiversity with Biogeochemistry Research in a Central German Muschelkalk Landscape. Frontiers in Earth Science, 2016, 4, .	0.8	98
15	STXM and NanoSIMS Investigations on EPS Fractions before and after Adsorption to Goethite. Environmental Science & Technology, 2013, 47, 3158-3166.	4.6	95
16	Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Research, 2020, 170, 115341.	5.3	95
17	Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by <i>Geobacter bremensis</i> vs. abiotic reduction by Na-dithionite. Biogeosciences, 2014, 11, 4953-4966.	1.3	92
18	Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine. Applied and Environmental Microbiology, 2014, 80, 5086-5097.	1.4	91

#	Article	IF	CITATIONS
19	Large Fractions of CO ₂ -Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds. Applied and Environmental Microbiology, 2015, 81, 2384-2394.	1.4	86
20	Biodegradation of ferrihydrite-associated organic matter. Biogeochemistry, 2014, 119, 45-50.	1.7	80
21	Flow and Reactivity Effects on Dissolved Organic Matter Transport in Soil Columns. Soil Science Society of America Journal, 1998, 62, 1268-1274.	1.2	77
22	Physicochemical factors controlling the release of dissolved organic carbon from columns of forest subsoils. European Journal of Soil Science, 2002, 53, 311-320.	1.8	76
23	Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches. Biogeosciences, 2017, 14, 2697-2714.	1.3	72
24	Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent. Environmental Pollution, 2011, 159, 1398-1405.	3.7	71
25	How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 2009, 157, 3336-3346.	3.7	70
26	Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 2017, 53, 9-22.	2.3	67
27	Pesticide displacement along preferential flow pathways in a Brazilian Oxisol. Geoderma, 2002, 110, 63-86.	2.3	62
28	Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 2017, 31, 3783-3795.	1.1	62
29	The modeling of reactive solute transport with sorption to mobile and immobile sorbents: 1. Experimental evidence and model development. Water Resources Research, 1996, 32, 1611-1622.	1.7	61
30	Selective transport of plant root-associated bacterial populations in agricultural soils upon snowmelt. Soil Biology and Biochemistry, 2014, 69, 187-196.	4.2	59
31	Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry, 2022, 164, 108483.	4.2	59
32	Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany. Hydrology and Earth System Sciences, 2017, 21, 6091-6116.	1.9	58
33	Fate of anthracene in contaminated soil: transport and biochemical transformation under unsaturated flow conditions. European Journal of Soil Science, 2002, 53, 71-81.	1.8	51
34	Attached and Suspended Denitrifier Communities in Pristine Limestone Aquifers Harbor High Fractions of Potential Autotrophs Oxidizing Reduced Iron and Sulfur Compounds. Microbial Ecology, 2017, 74, 264-277.	1.4	50
35	Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes. Frontiers in Microbiology, 2017, 8, 1951.	1.5	48
36	Influence of geogenic CO2 on mineral and organic soil constituents on a mofette site in the NW Czech Republic. European Journal of Soil Science, 2011, 62, 572-580.	1.8	47

#	Article	IF	CITATIONS
37	Desorption of Polycyclic Aromatic Hydrocarbons from Soil in the Presence of Dissolved Organic Matter: Effect of Solution Composition and Aging. Journal of Environmental Quality, 2000, 29, 906-916.	1.0	46
38	Detection of non-equilibrium contaminant release in soil columns: Delineation of experimental conditions by numerical simulations. Journal of Plant Nutrition and Soil Science, 2003, 166, 475-483.	1.1	46
39	A rapid and efficient determination of natural estrogens in soils by pressurised liquid extraction and gas chromatography–mass spectrometry. Chemosphere, 2008, 71, 954-960.	4.2	45
40	Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages. Hydrology and Earth System Sciences, 2017, 21, 4283-4300.	1.9	45
41	Evaluation of Fluorideâ€Induced Metal Mobilization in Soil Columns. Journal of Environmental Quality, 2000, 29, 454-459.	1.0	44
42	Ferrihydrite-associated organic matter (OM) stimulates reduction by <i>Shewanella oneidensis</i> MR-1 and a complex microbial consortia. Biogeosciences, 2017, 14, 5171-5188.	1.3	44
43	Release of Polycyclic Aromatic Hydrocarbons, Dissolved Organic Carbon, and Suspended Matter from Disturbed NAPL-Contaminated Gravelly Soil Material. Vadose Zone Journal, 2006, 5, 469-479.	1.3	43
44	Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biology and Biochemistry, 2020, 145, 107785.	4.2	43
45	A simple method to synthesize birnessite at ambient pressure and temperature. Geoderma, 2013, 193-194, 117-121.	2.3	42
46	Oxygen availability and distance to surface environments determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone aquifers in the Hainich region, Germany. FEMS Microbiology Ecology, 2014, 90, 39-53.	1.3	42
47	Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils. Physics and Chemistry of the Earth, 1998, 23, 179-185.	0.3	39
48	Single Event-Driven Export of Polycyclic Aromatic Hydrocarbons and Suspended Matter from Coal Tar-Contaminated Soil. Vadose Zone Journal, 2007, 6, 233-243.	1.3	38
49	Andic properties in soils developed from nonvolcanic materials in Central Bhutan. Journal of Plant Nutrition and Soil Science, 2005, 168, 703-713.	1.1	37
50	Effective rates of heavy metal release from alkaline wastes — Quantified by column outflow experiments and inverse simulations. Journal of Contaminant Hydrology, 2008, 101, 53-66.	1.6	37
51	Model study on sorption of polycyclic aromatic hydrocarbons to goethite. Journal of Colloid and Interface Science, 2009, 330, 244-249.	5.0	37
52	Estimation of clay content from easily measurable water content of airâ€dried soil. Journal of Plant Nutrition and Soil Science, 2012, 175, 367-376.	1.1	37
53	Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone Journal, 2004, 3, 352-367.	1.3	36
54	Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials. Journal of Contaminant Hydrology, 2006, 85, 271-286.	1.6	36

#	Article	IF	CITATIONS
55	Size- and Composition-Dependent Toxicity of Synthetic and Soil-Derived Fe Oxide Colloids for the Nematode <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2015, 49, 544-552.	4.6	36
56	Candidate Brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. Journal of Proteomics, 2017, 152, 153-160.	1.2	36
57	Dissolved Inorganic Contaminants in a Floodplain Soil: Comparison of In Situ Soil Solutions and Laboratory Methods. Water, Air, and Soil Pollution, 2010, 209, 489-500.	1.1	35
58	Formation of mineral–mineral and organo–mineral composite building units from microaggregateâ€forming materials including microbially produced extracellular polymeric substances. European Journal of Soil Science, 2019, 70, 604-615.	1.8	35
59	Groundwater bacterial communities evolve over time in response to recharge. Water Research, 2021, 201, 117290.	5.3	35
60	Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with WHNSIM. Journal of Contaminant Hydrology, 1995, 20, 265-284.	1.6	34
61	The modeling of reactive solute transport with sorption to mobile and immobile sorbents: 2. Model discussion and numerical simulation. Water Resources Research, 1996, 32, 1623-1634.	1.7	34
62	Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil. Journal of Soils and Sediments, 2012, 12, 3-23.	1.5	34
63	The endolithic bacterial diversity of shallow bedrock ecosystems. Science of the Total Environment, 2019, 679, 35-44.	3.9	34
64	Impact of optimized mixing heights on simulated regional atmospheric transport of CO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 7149-7172.	1.9	33
65	Structure and composition of Fe–OM co-precipitates that form in soil-derived solutions. Geochimica Et Cosmochimica Acta, 2015, 169, 167-183.	1.6	33
66	lron species in soils on a mofette site studied by Fe K-edge X-ray absorption near-edge spectroscopy. Chemical Geology, 2012, 332-333, 116-123.	1.4	31
67	PAH mobility in contaminated industrial soils: a Markov chain approach to the spatial variability of soil properties and PAH levels. Geoderma, 2001, 102, 371-389.	2.3	30
68	Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR) Tj ETQq0 0 0	gBT /Over	lock 10 Tf 50
69	Mobility of the growth promoters trenbolone and melengestrol acetate in agricultural soil: column studies. Science of the Total Environment, 2004, 326, 225-237.	3.9	29
70	Contaminants at Former Manufactured Gas Plants: Sources, Properties, and Processes. Critical Reviews in Environmental Science and Technology, 2011, 41, 1883-1969.	6.6	29
71	Fueling Diversity in the Subsurface: Composition and Age of Dissolved Organic Matter in the Critical Zone. Frontiers in Earth Science, 2019, 7, .	0.8	29
72	Archaeal Diversity and CO ₂ Fixers in Carbonate-/Siliciclastic-Rock Groundwater	2.3	28

Ecosystems. Archaea, 2017, 2017, 1-13.

#	Article	IF	CITATIONS
73	Complex food webs coincide with high genetic potential for chemolithoautotrophy in fractured bedrock groundwater. Water Research, 2020, 170, 115306.	5.3	28
74	Fast microbial reduction of ferrihydrite colloids from a soil effluent. Geochimica Et Cosmochimica Acta, 2012, 77, 444-456.	1.6	27
75	Difference in PAH release processes from tar-oil contaminated soil materials with similar contamination history. Chemie Der Erde, 2009, 69, 109-124.	0.8	26
76	First insights into the living groundwater mycobiome of the terrestrial biogeosphere. Water Research, 2018, 145, 50-61.	5.3	26
77	Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. Journal of Hydrology, 2020, 580, 124291.	2.3	26
78	Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities. Frontiers in Microbiology, 2016, 7, 666.	1.5	24
79	¹⁴ Câ€Free Carbon Is a Major Contributor to Cellular Biomass in Geochemically Distinct Groundwater of Shallow Sedimentary Bedrock Aquifers. Water Resources Research, 2019, 55, 2104-2121.	1.7	24
80	Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Science of the Total Environment, 2021, 756, 143774.	3.9	24
81	Nanosized Ferrihydrite Colloids Facilitate Microbial Iron Reduction under Flow Conditions. Geomicrobiology Journal, 2010, 27, 123-129.	1.0	23
82	Selective transport and retention of organic matter and bacteria shapes initial pedogenesis in artificial soil - A two-layer column study. Geoderma, 2018, 325, 37-48.	2.3	23
83	Simulation of carrier-facilitated transport of phenanthrene in a layered soil profile. Journal of Contaminant Hydrology, 2002, 56, 209-225.	1.6	22
84	Preferential flow and aging of NAPL in the unsaturated soil zone of a hazardous waste site: implications for contaminant transport. Journal of Plant Nutrition and Soil Science, 2003, 166, 102-110.	1.1	22
85	Microbial ecology of biogeochemical interfaces - diversity, structure, and function of microhabitats in soil. FEMS Microbiology Ecology, 2013, 86, 1-2.	1.3	22
86	Integrating Aquatic and Terrestrial Perspectives to Improve Insights Into Organic Matter Cycling at the Landscape Scale. Frontiers in Earth Science, 2019, 7, .	0.8	22
87	Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction. Environmental Science & Technology, 2021, 55, 10821-10831.	4.6	22
88	A <scp>NanoSIMS</scp> study on the distribution of soil organic matter, iron and manganese in a nodule from a <scp>S</scp> tagnosol. European Journal of Soil Science, 2014, 65, 684-692.	1.8	21
89	CP dynamics of heterogeneous organic material: characterization of molecular domains in coals. Solid State Nuclear Magnetic Resonance, 2004, 25, 252-266.	1.5	19
90	Synthesis of cryptomelane- and birnessite-type manganese oxides at ambient pressure and temperature. Journal of Colloid and Interface Science, 2013, 405, 44-50.	5.0	19

#	Article	IF	CITATIONS
91	Citrate influences microbial Fe hydroxide reduction via a dissolution–disaggregation mechanism. Geochimica Et Cosmochimica Acta, 2014, 139, 434-446.	1.6	19
92	Kinetic control of contaminant release from NAPLs – Experimental evidence. Environmental Pollution, 2013, 179, 315-325.	3.7	18
93	Phagotrophic Protist Diversity in the Groundwater of a Karstified Aquifer – Morphological and Molecular Analysis. Journal of Eukaryotic Microbiology, 2013, 60, 467-479.	0.8	18
94	An objective prior error quantification for regional atmospheric inverse applications. Biogeosciences, 2015, 12, 7403-7421.	1.3	17
95	Characterisation of Andosols from Laacher See tephra by wet-chemical and spectroscopic techniques (FTIR, 27Al-, 29Si-NMR). Chemical Geology, 2014, 363, 13-21.	1.4	16
96	Colloidal Stability and Mobility of Extracellular Polymeric Substance Amended Hematite Nanoparticles. Vadose Zone Journal, 2017, 16, 1-10.	1.3	16
97	Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PLoS ONE, 2017, 12, e0180264.	1.1	16
98	Selective successional transport of bacterial populations from rooted agricultural topsoil to deeper layers upon extreme precipitation events. Soil Biology and Biochemistry, 2018, 124, 168-178.	4.2	16
99	Modeling the formation of soil microaggregates. Computers and Geosciences, 2019, 127, 36-43.	2.0	16
100	Fluoro-mobilization of metals in a Slovak forest soil affected by the emissions of an aluminum smelter. Journal of Plant Nutrition and Soil Science, 2000, 163, 503-508.	1.1	15
101	Determination of effective release rates of polycyclic aromatic hydrocarbons and dissolved organic carbon by column outflow experiments. European Journal of Soil Science, 2005, 56, 050912034650044.	1.8	14
102	In situ production of core and intact bacterial and archaeal tetraether lipids in groundwater. Organic Geochemistry, 2018, 126, 1-12.	0.9	14
103	Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals. Environmental Science and Pollution Research, 2014, 21, 8964-8980.	2.7	13
104	Iron encrustations on filamentous algae colonized by <i>Gallionella</i> -related bacteria in a metal-polluted freshwater stream. Biogeosciences, 2015, 12, 5277-5289.	1.3	13
105	Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix. Microbiology (United Kingdom), 2016, 162, 62-71.	0.7	13
106	Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility. Vadose Zone Journal, 2004, 3, 352-367.	1.3	13
107	Release and mobility of polycyclic aromatic hydrocarbons and iron-cyanide complexes in contaminated soil. Journal of Plant Nutrition and Soil Science, 2001, 164, 643-649.	1.1	12
108	Degradation of deicing chemicals affects the natural redox system in airfield soils. Environmental Science and Pollution Research, 2014, 21, 9036-9053.	2.7	11

#	Article	IF	CITATIONS
109	Discrete-Continuum Multiphase Model for Structure Formation in Soils Including Electrostatic Effects. Frontiers in Environmental Science, 2018, 6, .	1.5	11
110	Application of a Cellular Automaton Method to Model the Structure Formation in Soils Under Saturated Conditions: A Mechanistic Approach. Frontiers in Environmental Science, 2019, 7, .	1.5	11
111	How water connectivity and substrate supply shape the turnover of organic matter – Insights from simulations at the scale of microaggregates. Geoderma, 2022, 405, 115394.	2.3	11
112	How electron flow controls contaminant dynamics. Environmental Science & Technology, 2010, 44, 3-6.	4.6	10
113	The mechanisms of gravity-constrained aggregation in natural colloidal suspensions. Journal of Colloid and Interface Science, 2021, 597, 126-136.	5.0	10
114	Desorption controlled mobility and intrinsic biodegradation of anthracene in unsaturated soil. Physics and Chemistry of the Earth, 1999, 24, 549-555.	0.3	9
115	Subsurface aquifer heterogeneities of Lower Triassic clastic sediments in central Germany. Marine and Petroleum Geology, 2018, 97, 209-222.	1.5	9
116	Sorption of an acidic herbicide on synthetic iron oxides and soils: sorption isotherms. Science of the Total Environment, 1992, 123-124, 121-131.	3.9	8
117	Kinetic control of contaminant release from NAPLs – Information potential of concentration time profiles. Environmental Pollution, 2013, 179, 301-314.	3.7	8
118	Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis. Environmental Science and Pollution Research, 2013, 21, 9054-66.	2.7	8
119	Heterogenitäder Bodeneigenschaften und der Schadstoffbelastung eines ehemaligen Gaswerkstandortes. Grundwasser, 1998, 3, 175-182.	1.4	7
120	Modeling the kinetics of microbial degradation of deicing chemicals in porous media under flow conditions. Environmental Pollution, 2012, 168, 96-106.	3.7	7
121	The composition of mobile matter in a floodplain topsoil: A comparative study with soil columns and field lysimeters. Journal of Plant Nutrition and Soil Science, 2016, 179, 18-28.	1.1	7
122	Quantification of pH-dependent speciation of organic compounds with spectroscopy and chemometrics. Chemosphere, 2017, 172, 175-184.	4.2	7
123	Steel pickling rinse water sludge: Concealed formation of Cr(VI) driven by the enhanced oxidation of nitrite. Journal of Environmental Chemical Engineering, 2017, 5, 2163-2170.	3.3	7
124	Multi-species inversion and IAGOS airborne data for a better constraint of continental-scale fluxes. Atmospheric Chemistry and Physics, 2018, 18, 9225-9241.	1.9	7
125	Glucose-stimulation of natural microbial activity changes composition, structure and engineering properties of sandy and loamy soils. Engineering Geology, 2020, 265, 105381.	2.9	7
126	Onâ€Line Solid Phase Extraction for Polycyclic Aromatic Hydrocarbons in Soil Column Effluents. Journal of Environmental Quality, 1999, 28, 730-732.	1.0	6

#	Article	IF	CITATIONS
127	Sorption and Transport of Iron-Cyanide Complexes in Goethite-coated Sand. Soil Science Society of America Journal, 2003, 67, 756-764.	1.2	6
128	PAH release from tarâ€oil contaminated soil material in response to forced environmental gradients: implications for contaminant transport. European Journal of Soil Science, 2008, 59, 50-60.	1.8	6
129	Advances of molecular modeling of biogeochemical interfaces in soils. Geoderma, 2011, 169, 1-3.	2.3	6
130	Constraints of propylene glycol degradation at low temperatures and saturated flow conditions. Environmental Science and Pollution Research, 2015, 22, 3158-3174.	2.7	6
131	Identification and quantification of single constituents in groundwater with Fourier-transform infrared spectroscopy and Positive Matrix Factorization. Vibrational Spectroscopy, 2019, 100, 152-158.	1.2	6
132	Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media. Journal of Colloid and Interface Science, 2021, 584, 592-601.	5.0	6
133	Depth-differentiated, multivariate control of biopore number under different land-use practices. Geoderma, 2022, 418, 115852.	2.3	6
134	Characterization of a Technosol developed from deposited flueâ€dust slurry and release of inorganic contaminants. Journal of Plant Nutrition and Soil Science, 2011, 174, 721-731.	1.1	5
135	The phenanthreneâ€sorptive interface of an arable topsoil and its particle size fractions. European Journal of Soil Science, 2013, 64, 121-130.	1.8	5
136	Closedâ€flow column experiments—Insights into solute transport provided by a damped oscillating breakthrough behavior. Water Resources Research, 2016, 52, 2206-2221.	1.7	5
137	Closedâ€flow column experiments: A numerical sensitivity analysis of reactive transport and parameter uncertainty. Water Resources Research, 2016, 52, 6094-6110.	1.7	5
138	Efficient Prediction of Multidomain Flow and Transport in Hierarchically Structured Porous Media. Water Resources Research, 2018, 54, 9033-9044.	1.7	5
139	Isolation of Individual Saturated Fatty Acid Methyl Esters Derived From Groundwater Phospholipids by Preparative Highâ€Pressure Liquid Chromatography for Compound‧pecific Radiocarbon Analyses. Water Resources Research, 2019, 55, 2521-2531.	1.7	5
140	Sorption and Transport of Iron-Cyanide Complexes in Goethite-coated Sand. Soil Science Society of America Journal, 2003, 67, 756.	1.2	5
141	The constraint of CO ₂ measurements made onboard passenger aircraft on surface–atmosphere fluxes: the impact of transport model errors in vertical mixing. Atmospheric Chemistry and Physics, 2017, 17, 5665-5675.	1.9	4
142	Intraformational fluid flow in the Thuringian Syncline (Germany) - Evidence from stable isotope data in vein mineralization of Upper Permian and Mesozoic sediments. Chemical Geology, 2019, 523, 133-153.	1.4	4
143	Soil Solution Analysis With Untargeted GC–MS—A Case Study With Different Lysimeter Types. Frontiers in Earth Science, 2021, 8, .	0.8	4
144	Net ecosystem exchange (NEE) estimates 2006–2019 over Europe from a pre-operational ensemble-inversion system. Atmospheric Chemistry and Physics, 2022, 22, 7875-7892.	1.9	4

#	Article	IF	CITATIONS
145	Identification of nonlinear sorption isotherms by soil column breakthrough experiments. Physics and Chemistry of the Earth, 1998, 23, 215-219.	0.3	3
146	Exposure of humic acid-coated goethite colloids to groundwater does not affect their adsorption of metal(loid)s and their impact on Daphnid mobility. Science of the Total Environment, 2021, 797, 149153.	3.9	3
147	Short-term forecasting of regional biospheric CO ₂ fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2). Geoscientific Model Development, 2020, 13, 4091-4106.	1.3	3
148	Unbiased identification of nonlinear sorption characteristics by soil column breakthrough experiments. Computational Geosciences, 2006, 9, 203-217.	1.2	2
149	Modelling Contaminant Transport in Anthropogenic Soil: Reconstruction of Spatial Heterogeneity by Analysing the Relations of Adjacent Pedofacies. , 0, , 1-19.		1
150	Editorial: Molecular modelling in soil research. European Journal of Soil Science, 2007, 58, 867-869.	1.8	1
151	Status and mobilization of trace elements in two ocherous soils of the Ruhr valley, Germany. Journal of Plant Nutrition and Soil Science, 2009, 172, 464-466	1.1	О