
Ali Khademhosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684748/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 2006, 18, 1345-1360.	11.1	3,481
2	Hydrogels in Regenerative Medicine. Advanced Materials, 2009, 21, 3307-3329.	11.1	2,326
3	Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.	5.7	1,871
4	Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31, 5536-5544.	5.7	1,864
5	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836
6	Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2480-2487.	3.3	1,443
7	25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014, 26, 85-124.	11.1	1,103
8	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
9	Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 371-383.	2.5	925
10	Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 2014, 111, 441-453.	1.7	916
11	Nanoparticle-Aptamer Bioconjugates. Cancer Research, 2004, 64, 7668-7672.	0.4	873
12	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	2.6	828
13	Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano, 2013, 7, 2369-2380.	7.3	789
14	Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on A Chip, 2014, 14, 2202-2211.	3.1	759
15	Microengineered hydrogels for tissue engineering. Biomaterials, 2007, 28, 5087-5092.	5.7	742
16	Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016, 106, 58-68.	5.7	727
17	Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016, 110, 45-59.	5.7	699
18	Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano, 2013, 7, 2891-2897	7.3	693

#	Article	IF	CITATIONS
19	Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Lowâ€Viscosity Bioink. Advanced Materials, 2016, 28, 677-684.	11.1	677
20	Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Advanced Functional Materials, 2012, 22, 2027-2039.	7.8	618
21	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25.	4.1	611
22	Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 2013, 166, 182-194.	4.8	597
23	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 108-118.	3.9	595
24	Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nature Protocols, 2016, 11, 727-746.	5.5	581
25	A decade of progress in tissue engineering. Nature Protocols, 2016, 11, 1775-1781.	5.5	570
26	Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2293-E2302.	3.3	570
27	Engineering microscale topographies to control the cell–substrate interface. Biomaterials, 2012, 33, 5230-5246.	5.7	568
28	Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012, 33, 3824-3834.	5.7	560
29	Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9522-9527.	3.3	548
30	Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 2016, 105, 255-274.	6.6	537
31	Nanotechnology in Textiles. ACS Nano, 2016, 10, 3042-3068.	7.3	530
32	Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6, 024105.	3.7	528
33	3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering, 2014, 16, 247-276.	5.7	522
34	Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018, 127, 138-166.	6.6	512
35	lonic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016, 1, .	23.3	511
36	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507

#	Article	IF	CITATIONS
37	Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter, 2009, 5, 1312.	1.2	504
38	Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends in Biotechnology, 2016, 34, 733-745.	4.9	490
39	Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017, 57, 1-25.	4.1	490
40	A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, 8, 014101.	3.7	466
41	Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 2010, 31, 6941-6951.	5.7	463
42	Injectable Graphene Oxide/Hydrogel-Based Angiogenic Gene Delivery System for Vasculogenesis and Cardiac Repair. ACS Nano, 2014, 8, 8050-8062.	7.3	449
43	Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Advanced Materials, 2013, 25, 3329-3336.	11.1	448
44	Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5, 686-705.	23.3	420
45	Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7, 8837.	1.6	407
46	Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS Nano, 2012, 6, 362-372.	7.3	400
47	Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature Materials, 2011, 10, 877-883.	13.3	397
48	Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends in Biotechnology, 2016, 34, 470-482.	4.9	387
49	Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 2013, 31, 669-687.	6.0	386
50	Reduced Graphene Oxideâ€GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Small, 2016, 12, 3677-3689.	5.2	385
51	Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on A Chip, 2012, 12, 45-59.	3.1	375
52	Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods, 2016, 99, 69-80.	1.9	366
53	Wearables in Medicine. Advanced Materials, 2018, 30, e1706910.	11.1	358
54	Progress in Tissue Engineering. Scientific American, 2009, 300, 64-71.	1.0	355

#	Article	IF	CITATIONS
55	A cell-laden microfluidic hydrogel. Lab on A Chip, 2007, 7, 756.	3.1	352
56	Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 2017, 6, 1601451.	3.9	352
57	Microfabricated Biomaterials for Engineering 3D Tissues. Advanced Materials, 2012, 24, 1782-1804.	11.1	351
58	Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16978-16983.	3.3	349
59	Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on A Chip, 2007, 7, 786.	3.1	344
60	Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010, 31, 7494-7502.	5.7	342
61	The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials, 2012, 33, 3143-3152.	5.7	342
62	Fabrication of Gradient Hydrogels Using a Microfluidics/Photopolymerization Process. Langmuir, 2004, 20, 5153-5156.	1.6	338
63	Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomaterialia, 2011, 7, 1441-1451.	4.1	338
64	Overview of Silk Fibroin Use in Wound Dressings. Trends in Biotechnology, 2018, 36, 907-922.	4.9	330
65	Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Advanced Materials, 2016, 28, 10244-10249.	11.1	327
66	Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, 2006, 27, 5391-5398.	5.7	318
67	Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano, 2014, 8, 9833-9842.	7.3	318
68	Biomimetic tissues on a chip for drug discovery. Drug Discovery Today, 2012, 17, 173-181.	3.2	317
69	Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 2017, 6, 1700015.	3.9	310
70	Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials, 2006, 27, 5259-5267.	5.7	309
71	Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014, 190, 82-93.	4.8	308
72	Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Advanced Drug Delivery Reviews, 2010, 62, 449-457.	6.6	305

#	Article	IF	CITATIONS
73	Layer-by-layer deposition of hyaluronic acid and poly-l-lysine for patterned cell co-cultures. Biomaterials, 2004, 25, 3583-3592.	5.7	297
74	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
75	Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1-13.	3.2	290
76	Bioinspired Materials for Controlling Stem Cell Fate. Accounts of Chemical Research, 2010, 43, 419-428.	7.6	284
77	Cell and Protein Compatibility of Parylene-C Surfaces. Langmuir, 2007, 23, 11718-11725.	1.6	279
78	Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs. Advanced Functional Materials, 2017, 27, 1605352.	7.8	278
79	A microwell array system for stem cell culture. Biomaterials, 2008, 29, 752-763.	5.7	277
80	Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting. Advanced Materials, 2018, 30, e1800242.	11.1	277
81	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	11.1	275
82	PGS:Gelatin nanofibrous scaffolds with tunable mechanical andÂstructural properties for engineering cardiac tissues. Biomaterials, 2013, 34, 6355-6366.	5.7	273
83	A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials, 2004, 25, 557-563.	5.7	271
84	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	3.7	271
85	Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 2013, 14, 1085-1092.	2.6	269
86	Stop-flow lithography to generate cell-laden microgel particles. Lab on A Chip, 2008, 8, 1056.	3.1	268
87	Synthesis and Characterization of Tunable Poly(Ethylene Glycol): Gelatin Methacrylate Composite Hydrogels. Tissue Engineering - Part A, 2011, 17, 1713-1723.	1.6	268
88	Layer by Layer Three-dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets. Tissue Engineering - Part C: Methods, 2010, 16, 157-166.	1.1	267
89	Cell″aden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide. Advanced Materials, 2013, 25, 6385-6391.	11.1	266
90	Engineering a highly elastic human protein–based sealant for surgical applications. Science Translational Medicine, 2017, 9, .	5.8	261

#	Article	IF	CITATIONS
91	Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Engineering - Part B: Reviews, 2012, 18, 363-382.	2.5	259
92	3D-printed microfluidic devices. Biofabrication, 2016, 8, 022001.	3.7	259
93	Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 2018, 14, e1703509.	5.2	257
94	Microfluidic techniques for development of 3D vascularized tissue. Biomaterials, 2014, 35, 7308-7325.	5.7	254
95	Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia, 2011, 7, 2384-2393.	4.1	251
96	Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 2014, 35, 7346-7354.	5.7	249
97	Gelatinâ€polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering and Translational Medicine, 2019, 4, 96-115.	3.9	249
98	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017, 49, 66-77.	4.1	244
99	Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Journal of Biomedical Materials Research - Part A, 2011, 96A, 566-574.	2.1	238
100	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	5.8	238
101	Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced Materials, 2013, 25, 4028-4034.	11.1	236
102	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	23.3	236
103	The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends in Biotechnology, 2018, 36, 348-357.	4.9	231
104	Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Science Advances, 2019, 5, eaav1281.	4.7	229
105	Highly Elastic and Conductive Humanâ€Based Protein Hybrid Hydrogels. Advanced Materials, 2016, 28, 40-49.	11.1	226
106	Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab on A Chip, 2005, 5, 1380.	3.1	224
107	Controlled-size embryoid body formation in concave microwell arrays. Biomaterials, 2010, 31, 4296-4303.	5.7	223
108	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	5.7	221

#	Article	IF	CITATIONS
109	Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials, 2006, 27, 1479-1486.	5.7	220
110	Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 2018, 10, 024102.	3.7	219
111	Biomimetic gradient hydrogels for tissue engineering. Canadian Journal of Chemical Engineering, 2010, 88, 899-911.	0.9	218
112	Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Engineering - Part B: Reviews, 2014, 20, 403-436.	2.5	218
113	In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials Science, 2017, 5, 2093-2105.	2.6	218
114	Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication, 2010, 2, 035003.	3.7	217
115	Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 2014, 47, 1949-1963.	0.9	216
116	Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 2014, 4, 4271.	1.6	213
117	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
118	Engineered Contractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate. Tissue Engineering - Part A, 2012, 18, 2453-2465.	1.6	206
119	Glucose‣ensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Advanced Materials, 2017, 29, 1606380.	11.1	206
120	Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. Journal of Biomedical Materials Research - Part A, 2006, 79A, 522-532.	2.1	203
121	Building Vascular Networks. Science Translational Medicine, 2012, 4, 160ps23.	5.8	202
122	Microfluidic Chip-Based Fabrication of PLGA Microfiber Scaffolds for Tissue Engineering. Langmuir, 2008, 24, 6845-6851.	1.6	201
123	Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. Advanced Functional Materials, 2013, 23, 4950-4959.	7.8	201
124	A Highly Elastic and Rapidly Crosslinkable Elastin‣ike Polypeptideâ€Based Hydrogel for Biomedical Applications. Advanced Functional Materials, 2015, 25, 4814-4826.	7.8	201
125	A Bioactive Carbon Nanotubeâ€Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016, 28, 3280-3289.	11.1	199
126	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	11.1	199

#	Article	IF	CITATIONS
127	Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 2006, 27, 5968-5977.	5.7	198
128	Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.	6.2	196
129	Bioprinting the Cancer Microenvironment. ACS Biomaterials Science and Engineering, 2016, 2, 1710-1721.	2.6	194
130	Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS Applied Materials & amp; Interfaces, 2017, 9, 11428-11439.	4.0	193
131	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	5.2	192
132	Multiscale bioprinting of vascularized models. Biomaterials, 2019, 198, 204-216.	5.7	191
133	Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab on A Chip, 2004, 4, 425.	3.1	190
134	Regulating Cellular Behavior on Fewâ€Layer Reduced Graphene Oxide Films with Well ontrolled Reduction States. Advanced Functional Materials, 2012, 22, 751-759.	7.8	189
135	Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016, 99, 62-68.	1.9	189
136	A highly adhesive and naturally derived sealant. Biomaterials, 2017, 140, 115-127.	5.7	188
137	Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials, 2006, 27, 5836-5844.	5.7	187
138	A Textile Dressing for Temporal and Dosage Controlled Drug Delivery. Advanced Functional Materials, 2017, 27, 1702399.	7.8	187
139	Controlling Mechanical Properties of Cellâ€Laden Hydrogels by Covalent Incorporation of Graphene Oxide. Small, 2014, 10, 514-523.	5.2	183
140	Bioprinted thrombosis-on-a-chip. Lab on A Chip, 2016, 16, 4097-4105.	3.1	183
141	Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011, 7, 1653-1664.	4.1	182
142	Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 2015, 7, 101-112.	3.8	182
143	Elastic sealants for surgical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 27-39.	2.0	182
144	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	3.2	181

#	Article	IF	CITATIONS
145	Microfluidic patterning for fabrication of contractile cardiac organoids. Biomedical Microdevices, 2007, 9, 149-157.	1.4	179
146	Photocrosslinkable <i>Kappa</i> arrageenan Hydrogels for Tissue Engineering Applications. Advanced Healthcare Materials, 2013, 2, 895-907.	3.9	178
147	Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Materials Today, 2018, 21, 362-376.	8.3	178
148	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	3.9	177
149	Sequential assembly of cellâ€laden hydrogel constructs to engineer vascularâ€like microchannels. Biotechnology and Bioengineering, 2011, 108, 1693-1703.	1.7	175
150	Organs-on-a-chip: a new tool for drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 335-352.	2.5	175
151	Flexible pHâ€ S ensing Hydrogel Fibers for Epidermal Applications. Advanced Healthcare Materials, 2016, 5, 711-719.	3.9	172
152	Transdermal regulation of vascular network bioengineering using aÂphotopolymerizable methacrylated gelatin hydrogel. Biomaterials, 2013, 34, 6785-6796.	5.7	170
153	Integrinâ€Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700289.	3.9	169
154	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	1.8	168
155	Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks. Tissue Engineering - Part A, 2009, 15, 1645-1653.	1.6	167
156	Delivery strategies to control inflammatory response: Modulating M1–M2 polarization in tissue engineering applications. Journal of Controlled Release, 2016, 240, 349-363.	4.8	164
157	Advancing Frontiers in Bone Bioprinting. Advanced Healthcare Materials, 2019, 8, e1801048.	3.9	164
158	Cultivation of Human Embryonic Stem Cells Without the Embryoid Body Step Enhances Osteogenesis In Vitro. Stem Cells, 2006, 24, 835-843.	1.4	163
159	Integrating microfluidics and lensless imaging for point-of-care testing. Biosensors and Bioelectronics, 2009, 24, 3208-3214.	5.3	162
160	A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsystems and Nanoengineering, 2016, 2, 16039.	3.4	162
161	Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Advanced Healthcare Materials, 2016, 5, 751-766.	3.9	161
162	Quantitative analysis of cell adhesion on aligned micro―and nanofibers. Journal of Biomedical Materials Research - Part A, 2008, 84A, 291-299.	2.1	160

#	Article	IF	CITATIONS
163	Microfluidic System for Studying the Interaction of Nanoparticles and Microparticles with Cells. Analytical Chemistry, 2005, 77, 5453-5459.	3.2	159
164	In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 16087-16100.	4.0	159
165	Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.	6.2	158
166	Roomâ€Temperatureâ€Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. Advanced Materials, 2020, 32, e1904752.	11.1	158
167	Photonic hydrogel sensors. Biotechnology Advances, 2016, 34, 250-271.	6.0	157
168	Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. Small, 2020, 16, e2002931.	5.2	157
169	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
170	Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design. Advanced Healthcare Materials, 2016, 5, 2174-2181.	3.9	153
171	A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics. Advanced Functional Materials, 2018, 28, 1703437.	7.8	152
172	Layerâ€byâ€Layer Assembly of 3D Tissue Constructs with Functionalized Graphene. Advanced Functional Materials, 2014, 24, 6136-6144.	7.8	151
173	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
174	3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano, 2020, 14, 1520-1532.	7.3	151
175	Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016, 4, 3544-3554.	2.9	149
176	Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab on A Chip, 2012, 12, 2959.	3.1	148
177	Effective bioprinting resolution in tissue model fabrication. Lab on A Chip, 2019, 19, 2019-2037.	3.1	148
178	Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials, 2011, 32, 9719-9729.	5.7	147
179	An injectable shear-thinning biomaterial for endovascular embolization. Science Translational Medicine, 2016, 8, 365ra156.	5.8	147
180	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	7.8	146

#	Article	IF	CITATIONS
181	Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbonâ^'Polyaniline Composite. ACS Applied Materials & Interfaces, 2017, 9, 9015-9023.	4.0	146
182	A Soft Lithographic Approach To Fabricate Patterned Microfluidic Channels. Analytical Chemistry, 2004, 76, 3675-3681.	3.2	145
183	Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 239-250.	1.1	145
184	Venous malformations: clinical diagnosis and treatment. Cardiovascular Diagnosis and Therapy, 2016, 6, 557-569.	0.7	145
185	Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 2016, 31, 134-143.	4.1	145
186	Electrochemical desorption of self-assembled monolayers for engineering cellular tissues. Biomaterials, 2009, 30, 3573-3579.	5.7	143
187	Polyphenol uses in biomaterials engineering. Biomaterials, 2018, 167, 91-106.	5.7	141
188	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017, 139, 163-171.	5.7	140
189	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189.	11.1	140
190	Development of hydrogels for regenerative engineering. Biotechnology Journal, 2017, 12, 1600394.	1.8	139
191	A low-cost flexible pH sensor array for wound assessment. Sensors and Actuators B: Chemical, 2016, 229, 609-617.	4.0	138
192	Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials, 2013, 34, 3970-3983.	5.7	137
193	Electrically conductive nanomaterials for cardiac tissue engineering. Advanced Drug Delivery Reviews, 2019, 144, 162-179.	6.6	137
194	Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy and Environmental Science, 2016, 9, 3210-3220.	15.6	136
195	Microscale electroporation: challenges and perspectives for clinical applications. Integrative Biology (United Kingdom), 2009, 1, 242-251.	0.6	135
196	From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomedical Materials (Bristol), 2015, 10, 034006.	1.7	134
197	Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs. Biomacromolecules, 2014, 15, 283-290.	2.6	133
198	Nanoclay-Enriched Poly(É›-caprolactone) Electrospun Scaffolds for Osteogenic Differentiation of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2014, 20, 2088-2101.	1.6	133

#	Article	IF	CITATIONS
199	Advances in Biomaterials and Technologies for Vascular Embolization. Advanced Materials, 2019, 31, e1901071.	11.1	133
200	Hydrogels for cardiac tissue engineering. NPG Asia Materials, 2014, 6, e99-e99.	3.8	132
201	Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Scientific Reports, 2016, 6, 24598.	1.6	132
202	Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomaterialia, 2016, 31, 388-400.	4.1	132
203	Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 283-291.	1.3	131
204	Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques. Advanced Functional Materials, 2014, 24, 4060-4067.	7.8	131
205	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 2014, 35, 7774-7785.	5.7	131
206	Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science, 2017, 4, 1600522.	5.6	131
207	Microfluidic Spinning of Cellâ€Responsive Grooved Microfibers. Advanced Functional Materials, 2015, 25, 2250-2259.	7.8	130
208	Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomaterialia, 2013, 9, 4906-4915.	4.1	129
209	Oxygenâ€releasing biomaterials for tissue engineering. Polymer International, 2013, 62, 843-848.	1.6	129
210	Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Lab on A Chip, 2007, 7, 1272.	3.1	128
211	DNA nanoparticles encapsulated in 3D tissueâ€engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2008, 85A, 47-60.	2.1	127
212	Designing Biomaterials To Direct Stem Cell Fate. ACS Nano, 2012, 6, 9353-9358.	7.3	127
213	Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13511-13516.	3.3	127
214	Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs. Advanced Healthcare Materials, 2015, 4, 2146-2153.	3.9	127
215	Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication, 2017, 9, 015020.	3.7	126

216 Integration column: microwell arrays for mammalian cell culture. Integrative Biology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 0.6

#	Article	IF	CITATIONS
217	Microfabrication technologies for oral drug delivery. Advanced Drug Delivery Reviews, 2012, 64, 496-507.	6.6	125
218	Cardiovascular Organ-on-a-Chip Platforms for Drug Discovery and Development. Applied in Vitro Toxicology, 2016, 2, 82-96.	0.6	124
219	Spatiotemporal release of BMP-2 and VECF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. Journal of Controlled Release, 2016, 223, 126-136.	4.8	124
220	Layer-by-Layer Surface Modification and Patterned Electrostatic Deposition of Quantum Dots. Nano Letters, 2004, 4, 1421-1425.	4.5	123
221	Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate–polycaprolactone scaffolds. Acta Biomaterialia, 2013, 9, 5963-5973.	4.1	123
222	A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Scientific Reports, 2014, 4, 3896.	1.6	123
223	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-62.	6.6	123
224	Magnetically Responsive Polymeric Microparticles for Oral Delivery of Protein Drugs. Pharmaceutical Research, 2006, 23, 557-564.	1.7	122
225	In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals. European Journal of Pharmaceutical Sciences, 2013, 49, 805-818.	1.9	121
226	Microfluidicâ€Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 2020, 16, e2000171.	5.2	121
227	Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics, 2017, 11, 044109.	1.2	120
228	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	11.8	120
229	The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials, 2012, 33, 6998-7007.	5.7	119
230	Construction of Nonbiofouling Surfaces by Polymeric Self-Assembled Monolayers. Langmuir, 2003, 19, 9989-9993.	1.6	118
231	A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics, 2019, 13, 064125.	1.2	118
232	Biodegradable Nanofibrous Polymeric Substrates for Generating Elastic and Flexible Electronics. Advanced Materials, 2014, 26, 5823-5830.	11.1	117
233	Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 2020, 255, 120196.	5.7	117
234	Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials, 2019, 192, 560-568.	5.7	116

#	Article	IF	CITATIONS
235	Patient‧pecific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 2018, 7, e1701347.	3.9	115
236	Reusable, reversibly sealable parylene membranes for cell and protein patterning. Journal of Biomedical Materials Research - Part A, 2008, 85A, 530-538.	2.1	114
237	Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 2015, 7, 6436-6443.	2.8	114
238	3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication, 2016, 8, 025019.	3.7	113
239	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	13.5	113
240	Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab on A Chip, 2013, 13, 3569.	3.1	112
241	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	11.1	112
242	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	7.8	112
243	Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjugate Chemistry, 2015, 26, 1984-2001.	1.8	111
244	Paper-based microfluidic system for tear electrolyte analysis. Lab on A Chip, 2017, 17, 1137-1148.	3.1	111
245	Organâ€onâ€aâ€Chip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e1801363.	3.9	111
246	Interfaceâ€Directed Selfâ€Assembly of Cellâ€Laden Microgels. Small, 2010, 6, 937-944.	5.2	110
247	Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties. Biomacromolecules, 2013, 14, 1299-1310.	2.6	110
248	Extrusion and Microfluidicâ€Based Bioprinting to Fabricate Biomimetic Tissues and Organs. Advanced Materials Technologies, 2020, 5, 1901044.	3.0	110
249	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, 2014, 35, 6268-6277.	5.7	109
250	Cell Response to Nanocrystallized Metallic Substrates Obtained through Severe Plastic Deformation. ACS Applied Materials & Interfaces, 2014, 6, 7963-7985.	4.0	109
251	A multilayered microfluidic blood vessel-like structure. Biomedical Microdevices, 2015, 17, 88.	1.4	109
252	A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics, 2016, 10, 044111.	1.2	109

#	Article	IF	CITATIONS
253	Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Advanced Healthcare Materials, 2016, 5, 175-184.	3.9	109
254	A Controlled-Release Strategy for the Generation of Cross-Linked Hydrogel Microstructures. Journal of the American Chemical Society, 2006, 128, 15064-15065.	6.6	108
255	Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation. Soft Matter, 2011, 7, 1903.	1.2	108
256	Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films. Biomaterials, 2011, 32, 5590-5599.	5.7	108
257	Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels. Advanced Materials, 2010, 22, 5276-5281.	11.1	107
258	Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS Nano, 2019, 13, 3830-3838.	7.3	105
259	Microâ€Masonry: Construction of 3D Structures by Microscale Selfâ€Assembly. Advanced Materials, 2010, 22, 2538-2541.	11.1	104
260	Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS ONE, 2012, 7, e46689.	1.1	104
261	The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35, 9087-9099.	5.7	104
262	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	7.3	104
263	Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 2018, 255, 100-109.	4.0	104
264	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104
265	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	5.2	104
266	Fabrication of non-biofouling polyethylene glycol micro- and nanochannels by ultraviolet-assisted irreversible sealing. Lab on A Chip, 2006, 6, 1432.	3.1	103
267	SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials, 2011, 32, 7479-7490.	5.7	103
268	Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 2017, 22, 1336-1350.	3.2	103
269	Osteoblastic/Cementoblastic and Neural Differentiation of Dental Stem Cells and Their Applications to Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2012, 18, 235-244.	2.5	102
270	Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. Journal of Biomaterials Applications, 2014, 29, 399-410.	1.2	102

#	Article	IF	CITATIONS
271	Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials, 2011, 32, 6119-6130.	5.7	101
272	A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting, 2018, 9, 19-36.	2.9	101
273	Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering. ACS Nano, 2019, 13, 12525-12539.	7.3	101
274	Nanoscale tissue engineering: spatial control over cell-materials interactions. Nanotechnology, 2011, 22, 212001.	1.3	100
275	Regenerative Therapies for Spinal Cord Injury. Tissue Engineering - Part B: Reviews, 2019, 25, 471-491.	2.5	100
276	Hybrid Nanosystems for Biomedical Applications. ACS Nano, 2021, 15, 2099-2142.	7.3	100
277	Engineered cell-laden human protein-based elastomer. Biomaterials, 2013, 34, 5496-5505.	5.7	99
278	Organs-on-a-chip for drug discovery. Current Opinion in Pharmacology, 2013, 13, 829-833.	1.7	99
279	Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosensors and Bioelectronics, 2014, 56, 359-367.	5.3	99
280	Facile One‣tep Micropatterning Using Photodegradable Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment. Advanced Functional Materials, 2015, 25, 977-986.	7.8	98
281	The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials, 2014, 35, 970-982.	5.7	97
282	lliac vein compression syndrome: Clinical, imaging and pathologic findings. World Journal of Radiology, 2015, 7, 375.	0.5	97
283	Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab on A Chip, 2012, 12, 3491.	3.1	96
284	Electrospun PGS:PCL Microfibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy. Advanced Healthcare Materials, 2014, 3, 929-939.	3.9	95
285	Anisotropic poly (glycerol sebacate)-poly (<i>ïµ</i> -caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication, 2015, 7, 015001.	3.7	95
286	Periosteumâ€Mimetic Structures Made from Freestanding Microgrooved Nanosheets. Advanced Materials, 2014, 26, 3290-3296.	11.1	94
287	Rapid Generation of Biologically Relevant Hydrogels Containing Longâ€Range Chemical Gradients. Advanced Functional Materials, 2010, 20, 131-137.	7.8	92
288	Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2018, 69, 342-351.	4.1	91

#	Article	IF	CITATIONS
289	Biodegradable <i>β</i> â€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	3.9	91
290	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. Advanced Functional Materials, 2020, 30, 2000086.	7.8	91
291	Microporous cellâ€laden hydrogels for engineered tissue constructs. Biotechnology and Bioengineering, 2010, 106, 138-148.	1.7	90
292	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Scientific Reports, 2017, 7, 9220.	1.6	90
293	A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab on A Chip, 2011, 11, 1801.	3.1	89
294	Microscale Strategies for Generating Cell-Encapsulating Hydrogels. Polymers, 2012, 4, 1554-1579.	2.0	89
295	A highly stretchable and robust non-fluorinated superhydrophobic surface. Journal of Materials Chemistry A, 2017, 5, 16273-16280.	5.2	89
296	Effect of ionic strength on shear-thinning nanoclay–polymer composite hydrogels. Biomaterials Science, 2018, 6, 2073-2083.	2.6	89
297	Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Critical Reviews in Biotechnology, 2021, 41, 94-120.	5.1	89
298	Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomaterials Science, 2014, 2, 703-709.	2.6	88
299	Micro/Nanometerâ€Scale Fiber with Highly Ordered Structures by Mimicking the Spinning Process of Silkworm. Advanced Materials, 2013, 25, 3071-3078.	11.1	87
300	Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 2019, 294, 53-76.	4.8	87
301	Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 1-14.	1.3	86
302	A cost-effective fluorescence mini-microscope for biomedical applications. Lab on A Chip, 2015, 15, 3661-3669.	3.1	86
303	Stimuliâ€Responsive Delivery of Growth Factors for Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e1901714.	3.9	86
304	Engineered Nanomembranes for Directing Cellular Organization Toward Flexible Biodevices. Nano Letters, 2013, 13, 3185-3192.	4.5	85
305	Elastomeric recombinant protein-based biomaterials. Biochemical Engineering Journal, 2013, 77, 110-118.	1.8	85
306	Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomaterials Science, 2015, 3, 46-58.	2.6	85

#	Article	IF	CITATIONS
307	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	3.9	85
308	Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro―and Macroenvironments. Advanced Healthcare Materials, 2017, 6, 1600913.	3.9	84
309	Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell‣aden Hydrogel Yarns. Advanced Healthcare Materials, 2019, 8, e1801218.	3.9	84
310	Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials, 2019, 197, 345-367.	5.7	84
311	Wireless Flexible Smart Bandage for Continuous Monitoring of Wound Oxygenation. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 670-677.	2.7	83
312	Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomaterials Science, 2018, 6, 2938-2950.	2.6	83
313	Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration. Current Stem Cell Reports, 2016, 2, 33-42.	0.7	82
314	Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomedical Materials (Bristol), 2016, 11, 014104.	1.7	82
315	Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis. ACS Biomaterials Science and Engineering, 2017, 3, 1964-1971.	2.6	82
316	Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab on A Chip, 2009, 9, 761-767.	3.1	81
317	Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochimica Acta, 2013, 96, 124-133.	2.6	81
318	A robust super-tough biodegradable elastomer engineered by supramolecular ionic interactions. Biomaterials, 2016, 84, 54-63.	5.7	81
319	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	6.6	80
320	3D Bioprinting of Oxygenated Cell‣aden Gelatin Methacryloyl Constructs. Advanced Healthcare Materials, 2020, 9, e1901794.	3.9	80
321	Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels. Lab on A Chip, 2008, 8, 747.	3.1	79
322	Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab on A Chip, 2016, 16, 1579-1586.	3.1	79
323	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-12903.	23.0	79
324	Engineering Tough, Injectable, Naturally Derived, Bioadhesive Composite Hydrogels. Advanced Healthcare Materials, 2020, 9, e1901722.	3.9	78

#	Article	IF	CITATIONS
325	The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs. IEEE Reviews in Biomedical Engineering, 2013, 6, 47-62.	13.1	77
326	Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 679-687.	1.6	77
327	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
328	Micro- and Nanoscale Control of the Cardiac Stem Cell Niche for Tissue Fabrication. Tissue Engineering - Part B: Reviews, 2009, 15, 443-454.	2.5	76
329	The commercialization of genome-editing technologies. Critical Reviews in Biotechnology, 2017, 37, 924-932.	5.1	76
330	Advances in Controlled Oxygen Generating Biomaterials for Tissue Engineering and Regenerative Therapy. Biomacromolecules, 2020, 21, 56-72.	2.6	76
331	Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opinion on Drug Discovery, 2007, 2, 1653-1668.	2.5	75
332	Convection-driven generation of long-range material gradients. Biomaterials, 2010, 31, 2686-2694.	5.7	75
333	Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€a hip Model. Small, 2017, 13, 1603737.	5.2	75
334	Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid‣tate Batteries Using Ionic Liquidâ€Based Interlayers. Small, 2020, 16, e2000279.	5.2	75
335	Additively manufactured metallic biomaterials. Bioactive Materials, 2022, 15, 214-249.	8.6	75
336	UV-assisted capillary force lithography for engineering biomimetic multiscale hierarchical structures: From lotus leaf to gecko foot hairs. Nanoscale, 2009, 1, 331.	2.8	74
337	Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab on A Chip, 2010, 10, 2411.	3.1	73
338	Cancer Modelingâ€onâ€a hip with Future Artificial Intelligence Integration. Small, 2019, 15, e1901985.	5.2	73
339	An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. Advanced Science, 2020, 7, 1902740.	5.6	73
340	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	4.5	72
341	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72
342	Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by <i>in Situ</i> Dopamine Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 40290-40301.	4.0	72

#	Article	IF	CITATIONS
343	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of Biomedical Engineering, 2016, 44, 1908-1920.	1.3	71
344	Bioprinters for organs-on-chips. Biofabrication, 2019, 11, 042002.	3.7	71
345	Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 2019, 115, 251-267.	2.6	71
346	Directed assembly of cell-laden hydrogels for engineering functional tissues. Organogenesis, 2010, 6, 234-244.	0.4	70
347	Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2016, 94, 13-20.	0.9	70
348	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	1.3	70
349	Controlling the Fibroblastic Differentiation of Mesenchymal Stem Cells Via the Combination of Fibrous Scaffolds and Connective Tissue Growth Factor. Tissue Engineering - Part A, 2011, 17, 2773-2785.	1.6	69
350	Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials, 2014, 35, 3975-3985.	5.7	69
351	Chitin nanofiber micropatterned flexible substrates for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 4217.	2.9	68
352	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 2022, 285, 121479.	5.7	68
353	Three-Dimensional Bioprinting Strategies for Tissue Engineering. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a025718.	2.9	67
354	The emergence of 3D bioprinting in organ-on-chip systems. Progress in Biomedical Engineering, 2019, 1, 012001.	2.8	67
355	Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307.	7.8	66
356	Directing Valvular Interstitial Cell Myofibroblast‣ike Differentiation in a Hybrid Hydrogel Platform. Advanced Healthcare Materials, 2015, 4, 121-130.	3.9	66
357	Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964.	2.6	66
358	Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 2013, 9, 87-92.	0.4	65
359	Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine, 2015, 10, 685-688.	1.7	65
360	Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 337-347.	1.3	64

#	Article	IF	CITATIONS
361	The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials, 2008, 29, 1216-1223.	5.7	63
362	Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter, 2010, 6, 5120.	1.2	63
363	Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Journal of Controlled Release, 2014, 187, 66-73.	4.8	63
364	Electrospun nanofiber blend with improved mechanical and biological performance. International Journal of Nanomedicine, 2018, Volume 13, 7891-7903.	3.3	63
365	Advancing Tissue Engineering: A Tale of Nanoâ€, Microâ€, and Macroscale Integration. Small, 2016, 12, 2130-2145.	5.2	62
366	Gelatin–Polyaniline Composite Nanofibers Enhanced Excitation–Contraction Coupling System Maturation in Myotubes. ACS Applied Materials & Interfaces, 2017, 9, 42444-42458.	4.0	62
367	Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends in Biotechnology, 2018, 36, 445-456.	4.9	62
368	Highly Stable Quasiâ€Solidâ€State Lithium Metal Batteries: Reinforced Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface by a Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339.	10.2	62
369	Microscale Technologies and Modular Approaches for Tissue Engineering: Moving toward the Fabrication of Complex Functional Structures. ACS Nano, 2011, 5, 4258-4264.	7.3	61
370	Selfâ€Assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Microâ€∤Nanoscale Hierarchy of Collagen. Advanced Functional Materials, 2017, 27, 1606273.	7.8	61
371	Microengineered 3D cellâ€laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnology and Bioengineering, 2017, 114, 217-231.	1.7	61
372	A perspective on 3D bioprinting in tissue regeneration. Bio-Design and Manufacturing, 2018, 1, 157-160.	3.9	61
373	In situ three-dimensional printing for reparative and regenerative therapy. Biomedical Microdevices, 2019, 21, 42.	1.4	61
374	Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Translational Research, 2020, 216, 57-76.	2.2	61
375	Responsive Micromolds for Sequential Patterning of Hydrogel Microstructures. Journal of the American Chemical Society, 2011, 133, 12944-12947.	6.6	60
376	EMT-Inducing Biomaterials for Heart Valve Engineering: Taking Cues from Developmental Biology. Journal of Cardiovascular Translational Research, 2011, 4, 658-671.	1.1	60
377	A sandwiched microarray platform for benchtop cell-based high throughput screening. Biomaterials, 2011, 32, 841-848.	5.7	60
378	A mini-microscope for in situ monitoring of cells. Lab on A Chip, 2012, 12, 3976.	3.1	60

#	Article	IF	CITATIONS
379	Utilizing stem cells for three-dimensional neural tissue engineering. Biomaterials Science, 2016, 4, 768-784.	2.6	60
380	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
381	Engineered 3D tissue models for cell-laden microfluidic channels. Analytical and Bioanalytical Chemistry, 2009, 395, 185-193.	1.9	59
382	Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone. Advanced Healthcare Materials, 2017, 6, 1601122.	3.9	59
383	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	2.6	59
384	Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter, 2021, 4, 2886-2901.	5.0	59
385	Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. Journal of Mechanics of Materials and Structures, 2007, 2, 1103-1119.	0.4	58
386	Surfaceâ€directed assembly of cellâ€laden microgels. Biotechnology and Bioengineering, 2010, 105, 655-662.	1.7	58
387	Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 235-246.	3.3	58
388	Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment. Annals of Biomedical Engineering, 2012, 40, 1301-1315.	1.3	58
389	Directed Differentiation of Sizeâ€Controlled Embryoid Bodies Towards Endothelial and Cardiac Lineages in RGDâ€Modified Poly(Ethylene Glycol) Hydrogels. Advanced Healthcare Materials, 2013, 2, 195-205.	3.9	58
390	Gradients of physical and biochemical cues on polyelectrolyte multilayer films generated via microfluidics. Lab on A Chip, 2013, 13, 1562.	3.1	58
391	Functional Nanomaterials on 2D Surfaces and in 3D Nanocomposite Hydrogels for Biomedical Applications. Advanced Functional Materials, 2019, 29, 1904344.	7.8	58
392	Responsive Microgrooves for the Formation of Harvestable Tissue Constructs. Langmuir, 2011, 27, 5671-5679.	1.6	57
393	Microfabricated polyester conical microwells for cell culture applications. Lab on A Chip, 2011, 11, 2325.	3.1	57
394	Engineering Functional Epithelium for Regenerative Medicine and <i>In Vitro</i> Organ Models: A Review. Tissue Engineering - Part B: Reviews, 2013, 19, 529-543.	2.5	57
395	Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534.	1.7	57
396	Visible light crosslinkable human hair keratin hydrogels. Bioengineering and Translational Medicine, 2018, 3, 37-48.	3.9	57

#	Article	IF	CITATIONS
397	Biodegradable microneedle patch for transdermal gene delivery. Nanoscale, 2020, 12, 16724-16729.	2.8	57
398	A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small, 2021, 17, e2004258.	5.2	57
399	Generating Nonlinear Concentration Gradients in Microfluidic Devices for Cell Studies. Analytical Chemistry, 2011, 83, 2020-2028.	3.2	56
400	Directed assembly of cellâ€laden microgels for building porous threeâ€dimensional tissue constructs. Journal of Biomedical Materials Research - Part A, 2011, 97A, 93-102.	2.1	56
401	Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab on A Chip, 2014, 14, 482-493.	3.1	56
402	Additively Manufactured Gradient Porous Ti–6Al–4V Hip Replacement Implants Embedded with Cell-Laden Gelatin Methacryloyl Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 22110-22123.	4.0	56
403	Advancing cancer research using bioprinting for tumor-on-a-chip platforms. International Journal of Bioprinting, 2016, 2, 3.	1.7	56
404	Lens-Free Imaging for Biological Applications. Journal of the Association for Laboratory Automation, 2012, 17, 43-49.	2.8	55
405	Engineering Precision Medicine. Advanced Science, 2019, 6, 1801039.	5.6	55
406	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	7.8	55
407	Endovascular Embolization by Transcatheter Delivery of Particles: Past, Present, and Future. Journal of Functional Biomaterials, 2017, 8, 12.	1.8	54
408	Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sensors and Actuators B: Chemical, 2018, 262, 625-636.	4.0	54
409	Cardiac Fibrotic Remodeling on a Chip with Dynamic Mechanical Stimulation. Advanced Healthcare Materials, 2019, 8, e1801146.	3.9	54
410	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	3.7	54
411	Characterization of chemisorbed hyaluronic acid directly immobilized on solid substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 72B, 292-298.	1.6	53
412	Drug-Eluting Microarrays for Cell-Based Screening of Chemical-Induced Apoptosis. Analytical Chemistry, 2011, 83, 4118-4125.	3.2	53
413	Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2151-2163.	1.3	53
414	Microfabricated multilayer paryleneâ€C stencils for the generation of patterned dynamic coâ€cultures. Journal of Biomedical Materials Research - Part A, 2008, 86A, 278-288.	2.1	52

#	Article	IF	CITATIONS
415	Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. Journal of Bioscience and Bioengineering, 2010, 110, 572-576.	1.1	52
416	High-throughput approaches for screening and analysis of cell behaviors. Biomaterials, 2018, 153, 85-101.	5.7	52
417	Bioreactors for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1701504.	3.9	51
418	A Foreign Body Responseâ€onâ€aâ€Chip Platform. Advanced Healthcare Materials, 2019, 8, e1801425.	3.9	51
419	A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods. Tissue Engineering - Part C: Methods, 2010, 16, 249-259.	1.1	50
420	Three-Dimensional Printing: An Enabling Technology for IR. Journal of Vascular and Interventional Radiology, 2016, 27, 859-865.	0.2	50
421	A Human Liverâ€onâ€aâ€Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. Advanced Biology, 2019, 3, e1900104.	3.0	50
422	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
423	Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems, 2021, 3, 2000263.	3.3	50
424	Droplet-based microfluidics in biomedical applications. Biofabrication, 2022, 14, 022001.	3.7	50
425	Micropatterned Polymeric Nanosheets for Local Delivery of an Engineered Epithelial Monolayer. Advanced Materials, 2014, 26, 1699-1705.	11.1	49
426	Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices. Chemistry of Materials, 2016, 28, 3641-3648.	3.2	49
427	Cell-microenvironment interactions and architectures in microvascular systems. Biotechnology Advances, 2016, 34, 1113-1130.	6.0	49
428	Nanobead-on-string composites for tendon tissue engineering. Journal of Materials Chemistry B, 2018, 6, 3116-3127.	2.9	49
429	Polymer–Mesoporous Silica Nanoparticle Core–Shell Nanofibers as a Dual-Drug-Delivery System for Guided Tissue Regeneration. ACS Applied Nano Materials, 2020, 3, 1457-1467.	2.4	49
430	Immunomodulatory microneedle patch for periodontal tissue regeneration. Matter, 2022, 5, 666-682.	5.0	49
431	Stretchable and Micropatterned Membrane for Osteogenic Differentation of Stem Cells. ACS Applied Materials & Interfaces, 2014, 6, 11915-11923.	4.0	48
432	Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomaterialia, 2015, 11, 449-458.	4.1	48

#	Article	IF	CITATIONS
433	Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells, 2017, 35, 51-60.	1.4	48
434	Laponiteâ€Based Nanomaterials for Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2102054.	3.9	48
435	Labâ€onâ€a ontact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. Advanced Materials, 2022, 34, e2108389.	11.1	48
436	Micro- and Nanoengineering Approaches to Control Stem Cell-Biomaterial Interactions. Journal of Functional Biomaterials, 2011, 2, 88-106.	1.8	47
437	Gellan gum microgel-reinforced cell-laden gelatin hydrogels. Journal of Materials Chemistry B, 2014, 2, 2508-2516.	2.9	47
438	Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds. Biomacromolecules, 2016, 17, 415-426.	2.6	47
439	Recent advances in 3D bioprinting of musculoskeletal tissues. Biofabrication, 2021, 13, 022001.	3.7	47
440	Cell Docking in Double Grooves in a Microfluidic Channel. Small, 2009, 5, 1186-1194.	5.2	46
441	An integrated microfluidic device for two-dimensional combinatorial dilution. Lab on A Chip, 2011, 11, 3277.	3.1	46
442	Microfluidic fabrication of cell adhesive chitosan microtubes. Biomedical Microdevices, 2013, 15, 465-472.	1.4	46
443	Simulating Inflammation in a Wound Microenvironment Using a Dermal Woundâ€onâ€a hip Model. Advanced Healthcare Materials, 2019, 8, e1801307.	3.9	46
444	Material strategies for creating artificial cell-instructive niches. Current Opinion in Biotechnology, 2012, 23, 820-825.	3.3	44
445	Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. Journal of Materials Chemistry, 2012, 22, 17262.	6.7	44
446	Mechanisms of lamellar collagen formation in connective tissues. Biomaterials, 2016, 97, 74-84.	5.7	44
447	Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Scientific Reports, 2016, 6, 22691.	1.6	44
448	Smart scaffolds in tissue regeneration. International Journal of Energy Production and Management, 2018, 5, 125-128.	1.9	44
449	A microfluidic-based neurotoxin concentration gradient for the generation of an <i>in vitro</i> model of Parkinson's disease. Biomicrofluidics, 2011, 5, 22214.	1.2	43
450	Siphon-driven microfluidic passive pump with a yarn flow resistance controller. Lab on A Chip, 2014, 14, 4213-4219.	3.1	43

#	Article	IF	CITATIONS
451	From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell, 2016, 18, 20-24.	5.2	43
452	Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication, 2020, 12, 035023.	3.7	43
453	Covalent Immobilization of P-Selectin Enhances Cell Rolling. Langmuir, 2007, 23, 12261-12268.	1.6	42
454	Method of Bottom-Up Directed Assembly of Cell-Laden Microgels. Cellular and Molecular Bioengineering, 2008, 1, 157-162.	1.0	42
455	Controlling Spatial Organization of Multiple Cell Types in Defined 3D Geometries. Advanced Materials, 2012, 24, 5543-5547.	11.1	42
456	Designer Hydrophilic Regions Regulate Droplet Shape for Controlled Surface Patterning and 3D Microgel Synthesis. Small, 2012, 8, 393-403.	5.2	42
457	Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication, 2021, 13, 042002.	3.7	42
458	Recent developments in mussel-inspired materials for biomedical applications. Biomaterials Science, 2021, 9, 6653-6672.	2.6	42
459	Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell–based cartilage tissue engineering. Science Advances, 2020, 6, eaaz5913.	4.7	42
460	Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips. Biofabrication, 2022, 14, 014103.	3.7	42
461	Surfaceâ€Tensionâ€Driven Gradient Generation in a Fluid Stripe for Benchâ€Top and Microwell Applications. Small, 2011, 7, 892-901.	5.2	41
462	Fiberâ€Assisted Molding (FAM) of Surfaces with Tunable Curvature to Guide Cell Alignment and Complex Tissue Architecture. Small, 2014, 10, 4851-4857.	5.2	41
463	Multiâ€Dimensional Printing for Bone Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2001986.	3.9	41
464	Boosting clinical translation of nanomedicine. Nanomedicine, 2016, 11, 1495-1497.	1.7	40
465	Developing a biomimetic tooth bud model. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3326-3336.	1.3	40
466	Conformal Coating of Mammalian Cells Immobilized onto Magnetically Driven Beads. Tissue Engineering, 2005, 11, 1797-1806.	4.9	39
467	Interplay of biomaterials and micro-scale technologies for advancing biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1221-1240.	1.9	39
468	Anisotropic material synthesis by capillary flow in a fluid stripe. Biomaterials, 2011, 32, 6493-6504.	5.7	39

#	Article	IF	CITATIONS
469	Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels. Lab on A Chip, 2012, 12, 659-661.	3.1	39
470	Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications. Tissue Engineering - Part B: Reviews, 2013, 19, 368-379.	2.5	39
471	Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 2015, 53, 86-94.	5.7	39
472	The matrix reloaded: the evolution of regenerative hydrogels. Materials Today, 2016, 19, 190-196.	8.3	39
473	Unbiased Analysis of the Impact of Micropatterned Biomaterials on Macrophage Behavior Provides Insights beyond Predefined Polarization States. ACS Biomaterials Science and Engineering, 2017, 3, 969-978.	2.6	39
474	Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Scientific Reports, 2019, 9, 6535.	1.6	39
475	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
476	Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Research, 2020, 13, 2323-2331.	5.8	39
477	Microneedle drug eluting balloon for enhanced drug delivery to vascular tissue. Journal of Controlled Release, 2020, 321, 174-183.	4.8	38
478	Epidermisâ€Inspired Wearable Piezoresistive Pressure Sensors Using Reduced Graphene Oxide Selfâ€Wrapped Copper Nanowire Networks. Small Methods, 2022, 6, e2100900.	4.6	38
479	Thermoresponsive platforms for tissue engineering and regenerative medicine. AICHE Journal, 2011, 57, 3249-3258.	1.8	37
480	Art on the Nanoscale and Beyond. Advanced Materials, 2016, 28, 1724-1742.	11.1	37
481	Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. Small Methods, 2020, 4, 1900589.	4.6	37
482	Controlled Release of Drugs from Gradient Hydrogels for High-Throughput Analysis of Cell–Drug Interactions. Analytical Chemistry, 2012, 84, 1302-1309.	3.2	36
483	Diagnosis and management of mycotic aneurysms. Clinical Imaging, 2016, 40, 256-262.	0.8	36
484	Animal models of venous thrombosis. Cardiovascular Diagnosis and Therapy, 2017, 7, S197-S206.	0.7	36
485	Interconnectable Dynamic Compression Bioreactors for Combinatorial Screening of Cell Mechanobiology in Three Dimensions. ACS Applied Materials & Interfaces, 2018, 10, 13293-13303.	4.0	36
486	Photocrosslinkable Gelatin Hydrogels Modulate the Production of the Major Pro-inflammatory Cytokine, TNF-α, by Human Mononuclear Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 116.	2.0	36

#	Article	IF	CITATIONS
487	Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 20615-20627.	4.0	36
488	A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomedical Microdevices, 2013, 15, 109-115.	1.4	35
489	All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosensors and Bioelectronics, 2014, 54, 462-467.	5.3	35
490	Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Reviews and Reports, 2015, 11, 866-884.	5.6	35
491	Role of Rho-Associated Coiled-Coil Forming Kinase Isoforms in Regulation of Stiffness-Induced Myofibroblast Differentiation in Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 772-783.	1.4	35
492	High-throughput identification of small molecules that affect human embryonic vascular development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3022-E3031.	3.3	35
493	Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Advanced Healthcare Materials, 2021, 10, e2001305.	3.9	35
494	Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting, 2021, 21, e00125.	2.9	35
495	Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices. Nano Research, 2021, 14, 4294-4303.	5.8	35
496	Micro―and Nanoengineering of Biomaterials for Healthcare Applications. Advanced Healthcare Materials, 2013, 2, 10-12.	3.9	34
497	Adenosine-associated delivery systems. Journal of Drug Targeting, 2015, 23, 580-596.	2.1	34
498	Dental cell sheet biomimetic tooth bud model. Biomaterials, 2016, 106, 167-179.	5.7	34
499	Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators. Scientific Reports, 2016, 6, 22237.	1.6	34
500	State of the art in integrated biosensors for organ-on-a-chip applications. Current Opinion in Biomedical Engineering, 2021, 19, 100309.	1.8	34
501	Metallic glass thin films for potential biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1544-1552.	1.6	33
502	Hemostasis and nanotechnology. Cardiovascular Diagnosis and Therapy, 2017, 7, S267-S275.	0.7	33
503	In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioengineering and Translational Medicine, 2020, 5, e10180.	3.9	33
504	Ferrous sulfate-directed dual-cross-linked hyaluronic acid hydrogels with long-term delivery of donepezil. International Journal of Pharmaceutics, 2020, 582, 119309.	2.6	33

#	Article	IF	CITATIONS
505	Direct Confinement of Individual Viruses within Polyethylene Glycol (PEG) Nanowells. Nano Letters, 2006, 6, 1196-1201.	4.5	32
506	Surgical sealants and high strength adhesives. Materials Today, 2015, 18, 176-177.	8.3	32
507	Make better, safer biomaterials. Nature, 2016, 540, 335-337.	13.7	32
508	Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug Discovery Today, 2019, 24, 2212-2224.	3.2	32
509	Models of the Gut for Analyzing the Impact of Food and Drugs. Advanced Healthcare Materials, 2019, 8, e1900968.	3.9	32
510	Physics of bioprinting. Applied Physics Reviews, 2019, 6, .	5.5	32
511	Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Acta Biomaterialia, 2020, 117, 261-272.	4.1	32
512	Thrombolytic Agents: Nanocarriers in Controlled Release. Small, 2020, 16, e2001647.	5.2	32
513	Toward a neurospheroid niche model: optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication, 2021, 13, 015014.	3.7	32
514	Drug delivery systems in urology—getting "smarter― Urology, 2006, 68, 463-469.	0.5	31
515	A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking. Biomedical Microdevices, 2010, 12, 619-626.	1.4	31
516	Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO ₄ . Journal of Materials Chemistry A, 2016, 4, 17121-17128.	5.2	31
517	Textile Processes for Engineering Tissues with Biomimetic Architectures and Properties. Trends in Biotechnology, 2016, 34, 683-685.	4.9	31
518	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	5.2	31
519	Adult Cardiac Progenitor Cell Aggregates Exhibit Survival Benefit Both In Vitro and In Vivo. PLoS ONE, 2012, 7, e50491.	1.1	31
520	Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation. Biomedical Microdevices, 2017, 19, 57.	1.4	30
521	3Dâ€Printed Sugarâ€Based Stents Facilitating Vascular Anastomosis. Advanced Healthcare Materials, 2018, 7, e1800702.	3.9	30
522	Breathable hydrogel dressings containing natural antioxidants for management of skin disorders. Journal of Biomaterials Applications, 2019, 33, 1265-1276.	1.2	30

#	Article	IF	CITATIONS
523	In Vitro Human Liver Model of Nonalcoholic Steatohepatitis by Coculturing Hepatocytes, Endothelial Cells, and Kupffer Cells. Advanced Healthcare Materials, 2019, 8, e1901379.	3.9	30
524	Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Advanced Science, 2020, 7, 2001447.	5.6	30
525	Cancerâ€onâ€aâ€Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. Small, 2021, 17, e2004282.	5.2	30
526	Activatedâ€Esterâ€Type Photocleavable Crosslinker for Preparation of Photodegradable Hydrogels Using a Twoâ€Component Mixing Reaction. Advanced Healthcare Materials, 2015, 4, 246-254.	3.9	29
527	Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. RSC Advances, 2017, 7, 34331-34338.	1.7	29
528	Customizable Composite Fibers for Engineering Skeletal Muscle Models. ACS Biomaterials Science and Engineering, 2020, 6, 1112-1123.	2.6	29
529	Engineering in vitro human tissue models through bio-design and manufacturing. Bio-Design and Manufacturing, 2020, 3, 155-159.	3.9	29
530	Entrepreneurship. Lab on A Chip, 2015, 15, 3638-3660.	3.1	28
531	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	6.4	28
532	Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery. Advanced Therapeutics, 2020, 3, 1900183.	1.6	28
533	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nano-Micro Letters, 2021, 13, 212.	14.4	28
534	Cell confinement in patterned nanoliter droplets in a microwell array by wiping. Journal of Biomedical Materials Research - Part A, 2010, 93A, 547-557.	2.1	27
535	Microfluidic synthesis of composite crossâ€gradient materials for investigating cell–biomaterial interactions. Biotechnology and Bioengineering, 2011, 108, 175-185.	1.7	27
536	Study of long-term viability of endothelial cells for lab-on-a-chip devices. Sensors and Actuators B: Chemical, 2013, 182, 696-705.	4.0	27
537	Microfluidic Generation of Polydopamine Gradients on Hydrophobic Surfaces. Langmuir, 2014, 30, 832-838.	1.6	27
538	Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015, 3, 1449-1458.	2.6	27
539	Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sensors, 2016, 1, 921-928.	4.0	27
540	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	5.3	27

#	Article	IF	CITATIONS
541	The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. Materials, 2018, 11, 754.	1.3	27
542	Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2019, 6, 52.	1.1	27
543	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	3.1	27
544	<scp>Twoâ€dimensional</scp> metal organic frameworks for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1674.	3.3	27
545	A Sub-1-V, Microwatt Power-Consumption Iontronic Pressure Sensor Based on Organic Electrochemical Transistors. IEEE Electron Device Letters, 2021, 42, 46-49.	2.2	27
546	Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomaterials Science and Engineering, 2023, 9, 2048-2069.	2.6	27
547	Single Nanocrystal Arrays on Patterned Poly(ethylene glycol) Copolymer Microstructures Using Selective Wetting and Drying. Langmuir, 2004, 20, 6080-6084.	1.6	26
548	Bone Morphogenetic Protein-4 Enhances Cardiomyocyte Differentiation of Cynomolgus Monkey ESCs in Knockout Serum Replacement Medium. Stem Cells, 2007, 25, 571-580.	1.4	26
549	Anti-fouling strategies for central venous catheters. Cardiovascular Diagnosis and Therapy, 2017, 7, S246-S257.	0.7	26
550	Injectable openâ€porous <scp>PLGA</scp> microspheres as cell carriers for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 2091-2100.	2.1	26
551	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	3.9	25
552	A Dualâ€Layered Microfluidic System for Longâ€Term Controlled In Situ Delivery of Multiple Antiâ€Inflammatory Factors for Chronic Neural Applications. Advanced Functional Materials, 2018, 28, 1702009.	7.8	25
553	Cellâ€laden composite suture threads for repairing damaged tendons. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1039-1048.	1.3	25
554	Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing. Small, 2020, 16, e2001837.	5.2	25
555	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	1.8	25
556	Methods for Embryoid Body Formation: The Microwell Approach. Methods in Molecular Biology, 2011, 690, 151-162.	0.4	24
557	A paper-based oxygen generating platform with spatially defined catalytic regions. Sensors and Actuators B: Chemical, 2014, 198, 472-478.	4.0	24
558	A paper-based in vitro model for on-chip investigation of the human respiratory system. Lab on A Chip, 2016, 16, 4319-4325.	3.1	24

#	Article	IF	CITATIONS
559	Cancer: Nanoscience and Nanotechnology Approaches. ACS Nano, 2017, 11, 4375-4376.	7.3	24
560	A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication, 2019, 11, 025014.	3.7	24
561	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	3.9	24
562	Microengineering Hydrogels for Stem Cell Bioengineering and Tissue Regeneration. Journal of the Association for Laboratory Automation, 2010, 15, 440-448.	2.8	23
563	Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels. Acta Biomaterialia, 2011, 7, 106-114.	4.1	23
564	Intelligent recognitive systems in nanomedicine. Current Opinion in Chemical Engineering, 2014, 4, 105-113.	3.8	23
565	Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale, 2015, 7, 6238-6246.	2.8	23
566	Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. Nanomaterials, 2017, 7, 63.	1.9	23
567	Portal Vein Embolization: Impact of Chemotherapy and Genetic Mutations. Journal of Clinical Medicine, 2017, 6, 26.	1.0	23
568	Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization. MethodsX, 2019, 6, 1747-1752.	0.7	23
569	Cholesteryl Ester Liquid Crystal Nanofibers for Tissue Engineering Applications. , 2020, 2, 1067-1073.		23
570	Nanocomposite Hydrogel with Tantalum Microparticles for Rapid Endovascular Hemostasis. Advanced Science, 2021, 8, 2003327.	5.6	23
571	Coâ€Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small, 2022, 18, e2107714.	5.2	23
572	Patterning and Separating Infected Bacteria Using Host–Parasite and Virus–Antibody Interactions. Biomedical Microdevices, 2004, 6, 223-229.	1.4	22
573	Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on A Chip, 2014, 14, 3690-3694.	3.1	22
574	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	7.3	22
575	Poly (Ethylene Glycol)â€Based Hydrogels as Selfâ€Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties. Macromolecular Bioscience, 2017, 17, 1600479.	2.1	22
576	Evaluation of an elastic decellularized tendonâ€derived scaffold for the vascular tissue engineering application. Journal of Biomedical Materials Research - Part A, 2019, 107, 1225-1234.	2.1	22

#	Article	IF	CITATIONS
577	Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments. Advances in Experimental Medicine and Biology, 2015, 881, 161-186.	0.8	22
578	Arraycount, an algorithm for automatic cell counting in microwell arrays. BioTechniques, 2009, 47, x-xvi.	0.8	21
579	Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010, 2, 045001.	3.7	21
580	Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromolecular Research, 2015, 23, 245-255.	1.0	21
581	Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. Small, 2016, 12, 5132-5139.	5.2	21
582	Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Critical Reviews in Biotechnology, 2017, 37, 53-68.	5.1	21
583	3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication, 2019, 11, 045015.	3.7	21
584	In situ 3D printing of implantable energy storage devices. Chemical Engineering Journal, 2021, 409, 128213.	6.6	21
585	Electrospun Nanofibrous Membranes for Preventing Tendon Adhesion. ACS Biomaterials Science and Engineering, 2020, 6, 4356-4376.	2.6	21
586	Biomarkers and diagnostic tools for detection of Helicobacter pylori. Applied Microbiology and Biotechnology, 2016, 100, 4723-4734.	1.7	20
587	Applications of Nanotechnology for Regenerative Medicine; Healing Tissues at the Nanoscale. , 2019, , 485-504.		20
588	Bioengineered Multicellular Liver Microtissues for Modeling Advanced Hepatic Fibrosis Driven Through Nonâ€Alcoholic Fatty Liver Disease. Small, 2021, 17, e2007425.	5.2	20
589	Reconstructing the tumor architecture into organoids. Advanced Drug Delivery Reviews, 2021, 176, 113839.	6.6	20
590	Rapid Formation of Acrylated Microstructures by Microwaveâ€Induced Thermal Crosslinking. Macromolecular Rapid Communications, 2009, 30, 1382-1386.	2.0	19
591	Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs. Advanced Functional Materials, 2020, 30, 1909882.	7.8	19
592	Nanostructured Materials for Cardiovascular Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2012, 12, 4775-4785.	0.9	18
593	Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L733-L747.	1.3	18
594	Patient-Inspired Engineering and Nanotechnology. ACS Nano, 2015, 9, 7733-7734.	7.3	18

#	Article	IF	CITATIONS
595	A Microfabricated Sandwiching Assay for Nanoliter and Highâ€Throughput Biomarker Screening. Small, 2019, 15, e1900300.	5.2	18
596	Healthy and diseased <i>in vitro</i> models of vascular systems. Lab on A Chip, 2021, 21, 641-659.	3.1	18
597	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Advanced Materials, 2022, 34, e2200254.	11.1	18
598	Synergistic effects of micro/nano modifications on electrodes for microfluidic electrochemical ELISA. Sensors and Actuators B: Chemical, 2011, 156, 637-644.	4.0	17
599	Polymeric Biomaterials for Implantable Prostheses. , 2014, , 309-331.		17
600	A Pulsatile Flow System to Engineer Aneurysm and Atherosclerosis Mimetic Extracellular Matrix. Advanced Science, 2020, 7, 2000173.	5.6	17
601	Preventing cardiac remodeling: The combination of cell-based therapy and cardiac support therapy preserves left ventricular function in rodent model of myocardial ischemia. Journal of Thoracic and Cardiovascular Surgery, 2010, 140, 1374-1380.	0.4	16
602	A Janus-paper PDMS platform for air–liquid interface cell culture applications. Journal of Micromechanics and Microengineering, 2015, 25, 055015.	1.5	16
603	Highâ€ŧhroughput investigation of endothelialâ€ŧoâ€mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnology and Bioengineering, 2016, 113, 1403-1412.	1.7	16
604	Characterization, mechanistic analysis and improving the properties of denture adhesives. Dental Materials, 2018, 34, 120-131.	1.6	16
605	Micro and Nanoscale Technologies for Diagnosis of Viral Infections. Small, 2021, 17, e2100692.	5.2	16
606	Deep wells integrated with microfluidic valves for stable docking and storage of cells. Biotechnology Journal, 2011, 6, 156-164.	1.8	15
607	Vascularization of Biomaterials for Bone Tissue Engineering: Current Approaches and Major Challenges. Current Angiogenesis, 2012, 1, 180-191.	0.1	15
608	Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 690-699.	1.3	15
609	Platinum nanopetal-based potassium sensors for acute cell death monitoring. RSC Advances, 2016, 6, 40517-40526.	1.7	15
610	Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine. Regenerative Medicine, 2016, 11, 849-858.	0.8	15
611	Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells. ACS Biomaterials Science and Engineering, 2017, 3, 579-589.	2.6	15
612	Flexible and Stretchable PEDOTâ€Embedded Hybrid Substrates for Bioengineering and Sensory Applications. ChemNanoMat, 2019, 5, 729-737.	1.5	15

#	Article	IF	CITATIONS
613	3D cell-laden polymers to release bioactive products in the eye. Progress in Retinal and Eye Research, 2019, 68, 67-82.	7.3	15
614	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€a hip for Drug Screening. Small Methods, 2020, 4, 2000438.	4.6	15
615	Multifunctional Thermoresponsive Microcarriers for Highâ€Throughput Cell Culture and Enzymeâ€Free Cell Harvesting. Small, 2021, 17, e2103192.	5.2	15
616	Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS ONE, 2015, 10, e0135859.	1.1	15
617	pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. Nanoscale, 2022, 14, 350-360.	2.8	15
618	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	2.6	14
619	Selfâ€Plugging Microneedle (SPM) for Intravitreal Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2102599.	3.9	14
620	Biologically inspired â€~smart' materials. Advanced Drug Delivery Reviews, 2013, 65, 403-404.	6.6	13
621	Delivery of Cargo with a Bioelectronic Trigger. ACS Applied Materials & amp; Interfaces, 2018, 10, 21782-21787.	4.0	13
622	Effect of cell imprinting on viability and drug susceptibility of breast cancer cells to doxorubicin. Acta Biomaterialia, 2020, 113, 119-129.	4.1	13
623	Whitlockite-Enabled Hydrogel for Craniofacial Bone Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 35342-35355.	4.0	13
624	Application of microtechnologies for the vascularization of engineered tissues. Vascular Cell, 2011, 3, 24.	0.2	12
625	Polyester <i>μ</i> -assay chip for stem cell studies. Biomicrofluidics, 2012, 6, 44109.	1.2	12
626	Population balance modelling of stem cell culture in 3D suspension bioreactors. Chemical Engineering Research and Design, 2015, 101, 125-134.	2.7	12
627	Controlling Incoming Macrophages to Implants: Responsiveness of Macrophages to Gelatin Micropatterns under M1/M2 Phenotype Defining Biochemical Stimulations. Advanced Biology, 2017, 1, 1700041.	3.0	12
628	Preparation of Poly(ether-ether-ketone)/Nanohydroxyapatite Composites with Improved Mechanical Performance and Biointerfacial Affinity. ACS Omega, 2020, 5, 29398-29406.	1.6	12
629	Refractive Index Sensing for Measuring Single Cell Growth. ACS Nano, 2021, 15, 10710-10721.	7.3	12
630	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio Materials, 2020, 3, 6908-6918.	2.3	12

#	Article	IF	CITATIONS
631	Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. , 2022, 135, 212726.		12
632	An automated two-phase system for hydrogel microbead production. Biofabrication, 2012, 4, 035003.	3.7	11
633	Spot Identification and Quality Control in Cell-Based Microarrays. ACS Combinatorial Science, 2012, 14, 471-477.	3.8	11
634	Cell-Based Dose Responses from Open-Well Microchambers. Analytical Chemistry, 2013, 85, 5249-5254.	3.2	11
635	Smart flexible wound dressing with wireless drug delivery. , 2015, , .		11
636	Imaging findings, diagnosis, and clinical outcomes in patients with mycotic aneurysms: single center experience. Clinical Imaging, 2016, 40, 512-516.	0.8	11
637	Accelerating Advances in Science, Engineering, and Medicine through Nanoscience and Nanotechnology. ACS Nano, 2017, 11, 3423-3424.	7.3	11
638	Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics. Current Opinion in Biomedical Engineering, 2017, 1, 45-53.	1.8	11
639	Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication, 2021, 13, 035020.	3.7	11
640	Stabilizing the Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Li Interface for High Efficiency and Long Lifespan Quasiâ€Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	11
641	Receptorâ€Level Proximity and Fastening of Ligands Modulates Stem Cell Differentiation. Advanced Functional Materials, 2022, 32, .	7.8	11
642	A Gradient-generating Microfluidic Device for Cell Biology. Journal of Visualized Experiments, 2007, , 271.	0.2	10
643	Cells and Surfaces in vitro. , 2013, , 408-427.		10
644	Microfluidics in biofabrication. Biofabrication, 2020, 12, 030201.	3.7	10
645	Templateâ€Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels. Advanced Healthcare Materials, 2022, 11, e2102123.	3.9	10
646	Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications. , 2010, 2010, 3546-8.		9
647	Wireless flexible smart bandage for continuous monitoring of wound oxygenation. , 2014, , .		9
648	A Systematic Approach to Nuclear Fuel Cycle Analysis and Optimization. Nuclear Science and Engineering, 2014, 178, 186-201.	0.5	9

#	Article	IF	CITATIONS
649	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	9
650	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	1.1	9
651	Stochastic model of self-assembly of cell-laden hydrogels. Physical Review E, 2009, 80, 061901.	0.8	8
652	Microtechnologies in the Fabrication of Fibers for Tissue Engineering. RSC Nanoscience and Nanotechnology, 2014, , 1-18.	0.2	8
653	Biomimetic Interfaces in Biomedical Devices. Advanced Healthcare Materials, 2017, 6, 1700761.	3.9	8
654	Engineering Hydrogels beyond a Hydrated Network. Advanced Healthcare Materials, 2019, 8, e1900038.	3.9	8
655	Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 010906.	3.3	8
656	Embryonic stem cells as a cell source for tissue engineering. , 2020, , 467-490.		8
657	Three-dimensionally printable shear-thinning triblock copolypeptide hydrogels with antimicrobial potency. Biomaterials Science, 2021, 9, 5144-5149.	2.6	8
658	Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter, 2010, 6, 4962.	1.2	7
659	Microfabrication Technology in Tissue Engineering. , 2014, , 283-310.		7
660	Emerging Trends in Biomaterials Research. Annals of Biomedical Engineering, 2016, 44, 1861-1862.	1.3	7
661	Use of Magnetic Resonance Venography in Screening Patients With Cryptogenic Stroke for May-Thurner Syndrome. Current Problems in Diagnostic Radiology, 2016, 45, 370-372.	0.6	7
662	Connecting Together Nanocenters around the World. ACS Nano, 2017, 11, 8531-8532.	7.3	7
663	3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular Bioscience, 2017, 17, 1700304.	2.1	7
664	Microfluidic systems for controlling stem cell microenvironments. , 2019, , 31-63.		7
665	Fractureâ€Resistant and Bioresorbable Drugâ€Eluting Poly(glycerol Sebacate) Coils. Advanced Therapeutics, 2019, 2, 1800109.	1.6	7
666	Enhancement of label-free biosensing of cardiac troponin I. , 2020, 11251, .		7

#	Article	IF	CITATIONS
667	Microscale Technologies for Tissue Engineering. , 2008, , 349-369.		6
668	Fabrication of Microscale Hydrogels for Tissue Engineering Applications. , 2013, , 59-80.		6
669	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	7.3	6
670	Tissue Regeneration: A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870021.	7.8	6
671	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq1 1	0. <u>78</u> 4314	rgBT /Over
672	Graphene Quantum Dots for Fluorescent Labeling of Gelatinâ€Based Shearâ€Thinning Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2000113.	1.7	6
673	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 321-338.		6
674	Engineering hairy cellulose nanocrystals for chemotherapy drug capture. Materials Today Chemistry, 2022, 23, 100711.	1.7	6
675	Solventless ordering of colloidal particles through application of patterned elastomeric stamps under pressure. Applied Physics Letters, 2004, 85, 2643-2645.	1.5	5
676	Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.	7.3	5
677	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2014, , 609-638.		5
678	Microengineered Emulsion-to-Powder Technology for the High-Fidelity Preservation of Molecular, Colloidal, and Bulk Properties of Hydrogel Suspensions. ACS Applied Polymer Materials, 2019, 1, 1935-1941.	2.0	5
679	Nanoengineered Antiviral Fibrous Arrays with Rose-Thorn-Inspired Architectures. , 2021, 3, 1566-1571.		5
680	Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication, 2022, 14, 014104.	3.7	5
681	Micro- and Nanoscale Control of Cellular Environment for Tissue Engineering. , 0, , 347-364.		4
682	Constrained watershed method to infer morphology of mammalian cells in microscopic images. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 1148-1159.	1.1	4
683	Finding the winning combination. Organogenesis, 2014, 10, 299-302.	0.4	4
684	Mesenchymal Stem Cells and their Potential for Microengineering the Chondrocyte Niche. EBioMedicine, 2015, 2, 1560-1561.	2.7	4

#	Article	IF	CITATIONS
685	Occlusion of the Internal Iliac Artery Is Associated with Smaller Prostate and Decreased Urinary Tract Symptoms. Journal of Vascular and Interventional Radiology, 2015, 26, 1305-1310.	0.2	4
686	pHâ€Sensing Hydrogel Fibers: Flexible pHâ€Sensing Hydrogel Fibers for Epidermal Applications (Adv.) Tj ETQqO C	0 0 ggBT /O	verlock 10 T
687	Label-free detection of protein molecules secreted from an organ-on-a-chip model for drug toxicity assays. Proceedings of SPIE, 2016, , .	0.8	4
688	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
689	Bioprinting: Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks (Adv. Healthcare) Tj ETQq1 1	0.784314	rg <mark>B</mark> T /Overlo
690	Bioprinting: Microfluidicsâ€Enabled Multimaterial Maskless Stereolithographic Bioprinting (Adv. Mater.) Tj ETQq0	0.0 rgBT 11.1	/Oyerlock 10
691	Smart Bandages: Smart Bandage for Monitoring and Treatment of Chronic Wounds (Small 33/2018). Small, 2018, 14, 1870150.	5.2	4
692	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	5.2	4
693	Microscale technologies for tissue engineering. , 2009, , .		3
694	Research highlights. Lab on A Chip, 2011, 11, 2651.	3.1	3
695	Emerging micro- and nanotechnologies in cancer diagnosis and therapy. Biomedical Microdevices, 2013, 15, 579-581.	1.4	3
696	Optimization of a biomimetic model for tooth regeneration. , 2014, , .		3
697	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	7.3	3
698	Biosensors: Labelâ€Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes (Adv. Sci. 5/2017). Advanced Science, 2017, 4, .	5.6	3
699	Tissue Engineering: Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs (Adv. Funct.) Tj ETQq1 1 0.78	34314 rgB ⁻ 7.8	[/gverlock]
700	Bone Bioprinting: Advancing Frontiers in Bone Bioprinting (Adv. Healthcare Mater. 7/2019). Advanced Healthcare Materials, 2019, 8, 1970030.	3.9	3
701	Hydrogels: Roomâ€Temperatureâ€Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics (Adv. Mater. 1/2020). Advanced Materials, 2020, 32, 2070005.	11.1	3
702	3D Bioprinting: Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels (Small 35/2020). Small, 2020, 16, 2070195.	5.2	3

#	ARTICLE	IF	CITATIONS
703	Cells and Surfaces in Vitro. , 2020, , 661-681.		3
704	Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems, 2021, 3, 2170047.	3.3	3
705	Novel Dual-Lumen Drainage Catheter to Enhance the Active Evacuation of Complex Fluid Collections. Journal of Vascular and Interventional Radiology, 2021, 32, 882-889.	0.2	3
706	Advances and challenges in bioprinting of biological tissues and organs. Artificial Organs, 2021, 45, 1441-1445.	1.0	3
707	Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105156.	1.5	3
708	Human Embryonic Stem Cell Culture for Tissue Engineering. , 2006, , 61-82.		2
709	A Microfluidic Device with Groove Patterns for Studying Cellular Behavior. Journal of Visualized Experiments, 2007, , 270.	0.2	2
710	Micro and Nanopatterning for Bacteria- and Virus-Based Biosensing Applications. , 2008, , 855-868.		2
711	Embryonic Stem Cells in Tissue Engineering. , 2009, , 571-581.		2
712	Microengineering Approach for Directing Embryonic Stem Cell Differentiation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 153-171.	0.7	2
713	Emerging materials for tissue engineering and regenerative medicine: themed issue for Journal of Materials Chemistry and Soft Matter. Journal of Materials Chemistry, 2010, 20, 8729.	6.7	2
714	Preface to Special Topic: Microfluidics in cell biology and tissue engineering. Biomicrofluidics, 2011, 5, 022101.	1.2	2
715	Liver Cell Line Derived Conditioned Medium Enhances Myofibril Organization of Primary Rat Cardiomyocytes. Molecules and Cells, 2012, 34, 149-158.	1.0	2
716	Microdroplet Patterning: Designer Hydrophilic Regions Regulate Droplet Shape for Controlled Surface Patterning and 3D Microgel Synthesis (Small 3/2012). Small, 2012, 8, 326-326.	5.2	2
717	Introduction to the Special Section on Nanostructured Materials for Tissue Regeneration. IEEE Transactions on Nanobioscience, 2012, 11, 1-2.	2.2	2
718	Bioactive Fibers: Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs (Adv. Healthcare Mater. 14/2015). Advanced Healthcare Materials, 2015, 4, 2050-2050.	3.9	2
719	An electrochemical biosensor based on gold microspheres and nanoporous gold for real-time detection of superoxide anion in skeletal muscle tissue. , 2015, 2015, 7962-5.		2
720	"Steel–Concrete―Inspired Biofunctional Layered Hybrid Cage for Spine Fusion and Segmental Bone Reconstruction. ACS Biomaterials Science and Engineering, 2017, 3, 637-647.	2.6	2

#	Article	IF	CITATIONS
721	Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870322.	11.1	2
722	Multi Use Microfluidic Biosensors for Continual Monitoring of Biomarkers from Microphysiological Systems. , 2019, , .		2
723	Hall of Fame Article: Minimally Invasive and Regenerative Therapeutics (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970005.	11.1	2
724	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	7.8	2
725	Experimental Approaches to Tissue Engineering. Journal of Visualized Experiments, 2007, , 272.	0.2	1
726	Layer by layer 3D tissue epitaxy by cell laden hydrogel droplets. , 2009, , .		1
727	Integrating microfluidics and lensless imaging for point-of-care testing. , 2009, , .		1
728	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	7.3	1
729	Special issue on tissue engineering. Biomedical Engineering Letters, 2013, 3, 115-116.	2.1	1
730	Microfluidic Systems for Controlling Stem Cells Microenvironments. , 2013, , 175-203.		1
731	Editorial: Biomolecular engineering – latest advances and applications. Biotechnology Journal, 2013, 8, 1366-1367.	1.8	1
732	Dielectrophoretical fabrication of hybrid carbon nanotubes-hydrogel biomaterial for muscle tissue engineering applications. Materials Research Society Symposia Proceedings, 2014, 1621, 81-86.	0.1	1
733	Immuno- and hemocompatibility of amino acid pairing peptides for potential use in anticancer drug delivery. Journal of Bioactive and Compatible Polymers, 2014, 29, 254-269.	0.8	1
734	Delivering life's blood: emerging technologies, current opportunities and challenges. Current Opinion in Chemical Engineering, 2014, 3, v-vi.	3.8	1
735	Micropatterning: Activatedâ€Esterâ€Type Photocleavable Crosslinker for Preparation of Photodegradable Hydrogels Using a Twoâ€Component Mixing Reaction (Adv. Healthcare Mater. 2/2015). Advanced Healthcare Materials, 2015, 4, 245-245.	3.9	1
736	HEAL Project Aims to Regenerate Human Limbs by 2030. Regenerative Engineering and Translational Medicine, 2015, 1, 50-57.	1.6	1
737	Gradient Biomaterials as Tissue Scaffolds. , 2015, , 175-186.		1

Microfabrication and Nanofabrication Techniques. , 2015, , 207-219.

1

#	Article	IF	CITATIONS
739	Organâ€Onâ€Aâ€Chip: Biomechanical Strain Exacerbates Inflammation on a Progeriaâ€onâ€aâ€Chip Model (S	mall), Tj ETO 5.2	Qq1110.7843
740	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	7.3	1
741	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	7.3	1
742	Aligned Cellâ€Laden Yarns: Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cellâ€Laden Hydrogel Yarns (Adv. Healthcare Mater. 7/2019). Advanced Healthcare Materials, 2019, 8, 1970025.	3.9	1
743	Highâ€Throughput Drug Screening: A Microfabricated Sandwiching Assay for Nanoliter and Highâ€Throughput Biomarker Screening (Small 15/2019). Small, 2019, 15, 1970078.	5.2	1
744	Microscale Biomaterials for Tissue Engineering. , 2011, , 119-138.		1
745	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
746	Abstract 4828: Recapitulating mammary ductal carcinoma microenvironmentin vitrousing sacrificial bioprinting. , 2017, , .		1
747	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices (Adv. Mater. 20/2022). Advanced Materials, 2022, 34, .	11.1	1
748	Microfabrication techniques in materiomics. , 0, , 51-66.		0
749	Part C: Directed Differentiation of Human Embryonic Stem Cells into Osteoblasts Cells. , 0, , 249-271.		0
750	Embryonic Stem Cells as a Cell Source for Tissue Engineering. , 2007, , 445-458.		0
751	Stem Cells: Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels (Adv. Mater. 46/2010). Advanced Materials, 2010, 22, 5220-5220.	11.1	Ο
752	Delving into BioMEMS [Guest Editorial]. IEEE Pulse, 2011, 2, 12-12.	0.1	0
753	Engineering of pathways, cells and tissues. Current Opinion in Biotechnology, 2011, 22, 601-603.	3.3	Ο
754	Letter of congratulations on the inauguration of â€~Biomedical Engineering Letters'. Biomedical Engineering Letters, 2011, 1, 5-6.	2.1	0
755	Tissue Engineering: Controlling Spatial Organization of Multiple Cell Types in Defined 3D Geometries (Adv. Mater. 41/2012). Advanced Materials, 2012, 24, 5542-5542.	11.1	0
756	Functional Biomaterials: Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4949-4949.	7.8	0

#	Article	IF	CITATIONS
757	Multiparametric MEMS Biosensors With Integrated Impedance Spectroscopy and Gravimetric Measurements for Water Toxicity Sensing. , 2013, , .		0
758	Microfabricated gels for tissue engineering. , 0, , 317-331.		0
759	Metallic glass nanofibers in future hydrogel-based scaffolds. , 2014, 2014, 5276-9.		0
760	Introduction: themed issue dedicated to Professor Kahp-Yang Suh. Lab on A Chip, 2014, 14, 2143.	3.1	0
761	Evaluation of Lung Sealants as Suture Replacements in an Ex Vivo Pig Model. Chest, 2015, 148, 38A.	0.4	0
762	Application of nanoporous gold in planar and mesh forms in electrochemical superoxide biosensing. , 2016, , .		0
763	A Tribute to Professor Kahp‥ang Suh (1972 – 2013). Advanced Healthcare Materials, 2016, 5, 8-9.	3.9	0
764	Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 46
765	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	7.3	0
766	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	0
767	Dissolvable Stents: 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis (Adv. Healthcare) Tj ETQq1 1	0.78431	4 rgBT /Ove
768	Terasaki Institute: Innovating Personalized Health through Convergent Science and Bioengineering. Matter, 2020, 3, 324-326.	5.0	0
769	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing (Small 25/2020). Small, 2020, 16, 2070142.	5.2	0
770	Tissue Engineering: Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs (Adv. Funct. Mater. 26/2020). Advanced Functional Materials, 2020, 30, 2070169.	7.8	0
771	Organâ€onâ€aâ€Chip: A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021, 17, 2170070.	5.2	0
772	Graphene Quantum Dots for Fluorescent Labeling of Gelatinâ€Based Shearâ€Thinning Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2170073.	1.7	0
773	Micro- and Nanoscale Technologies in High-Throughput Biomedical Experimentation. , 2009, , 314-346.		0

⁷⁷⁴Hyaluronic acid/collagen (HA/CN) assay for epithelial mesenchymal transformation (EMT) in cardiac
valvulogenesis. FASEB Journal, 2010, 24, 754.5.0.20

#	Article	IF	CITATIONS
775	Wide Range Logarithmic Gradient Formation for Cell Response. , 2011, , .		Ο
776	Microtechnological Approaches in Stem Cell Science. , 2012, , 135-165.		0
777	Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation. , 2018, , .		Ο
778	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 1-18.		0
779	News and Views March 2020. Regenerative Engineering and Translational Medicine, 2020, 6, 111-113.	1.6	Ο
780	Minimally Invasive Technologies for Biosensing. , 2020, , 193-223.		0