
Nishamol Kuriakose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coverage dependent CO2 activation on Ti2C(111) surface: Effect of intrinsic subsurface Carbon vacanciesâ€. Surface Science, 2021, 706, 121798.	1.9	1
2	CH ₄ activation and C–C coupling on the Ti ₂ C(100) surface in the presence of intrinsic C-vacancies: is excess good?. Journal of Materials Chemistry A, 2021, 9, 23703-23713.	10.3	2
3	CO ₂ capture, activation and dissociation on the Ti ₂ C surface and Ti ₂ C MXene: the role of surface structure. Physical Chemistry Chemical Physics, 2020, 22, 14599-14612.	2.8	30
4	Modeling the effect of ligands and solvation on hydrolysis variants in the Pd(II)-Catalyzed hydroxycarbonylation of pentenoic acids. Journal of Organometallic Chemistry, 2020, 914, 121221.	1.8	0
5	C–C coupling at a zeolite-supported Rh(<scp>i</scp>) complex. DFT search for the mechanism. Catalysis Science and Technology, 2019, 9, 2781-2793.	4.1	8
6	Characterization of Rh–Al Bond in Rh(PAlP) (PAlP = Pincer-type Diphosphino-Aluminyl Ligand) in Comparison with Rh(L)(PMe ₃) ₂ (L = AlMe ₂ ,) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 5 4.0	542_Td (Al(NI 27
7	Ethene Dimerization and Hydrogenation over a Zeolite-Supported Rh(I)-Carbonyl Complex: Mechanistic Insights from DFT Modeling. ACS Catalysis, 2018, 8, 9836-9846.	11.2	14
8	Rhodium Complexes Bearing PAIP Pincer Ligands. Journal of the American Chemical Society, 2018, 140, 7070-7073.	13.7	96
9	Can main group systems act as superior catalysts for dihydrogen generation reactions? A computational investigation. Dalton Transactions, 2016, 45, 5968-5977.	3.3	1
10	Can substituted allenes be highly efficient leaving groups in catalytic processes? A computational investigation. Journal of Computational Chemistry, 2015, 36, 795-804.	3.3	2
11	New insights into small molecule activation by acyclic silylenes: a computational investigation. Dalton Transactions, 2014, 43, 2194-2201.	3.3	20
12	Asymmetric transfer hydrogenation of imines in water/methanol co-solvent system and mechanistic investigation by DFT study. RSC Advances, 2014, 4, 46351-46356.	3.6	18
13	Can Molecular Cages Be Effective at Small Molecule Activation? A Computational Investigation. Inorganic Chemistry, 2013, 52, 4238-4243.	4.0	2
14	A Theoretical Study of Metal–Metal Cooperativity in the Homogeneous Water Gas Shift Reaction. Inorganic Chemistry, 2012, 51, 377-385.	4.0	25