List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684391/publications.pdf Version: 2024-02-01

ΙΕΡΕΜΙΛΗ Ι ΕΛΙΤΗ

#	Article	lF	CITATIONS
1	Impaired central tolerance induces changes in the gut microbiota that exacerbate autoimmune hepatitis. Journal of Autoimmunity, 2022, 128, 102808.	3.0	3
2	Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host and Microbe, 2022, 30, 583-598.e8.	5.1	51
3	The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. Advances in Alzheimer's Disease, 2022, , .	0.2	0
4	Immunoglobulin A antibody composition is sculpted to bind the self gut microbiome. Science Immunology, 2022, 7, .	5.6	18
5	Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales. PLoS ONE, 2021, 16, e0244763.	1.1	30
6	Enterococcus faecalis Glucosamine Metabolism Exacerbates Experimental Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1373-1389.	2.3	9
7	Maternal infection programmes offspring immunity. Nature Reviews Immunology, 2021, 21, 207-207.	10.6	0
8	Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology, 2021, 160, 2435-2450.e34.	0.6	118
9	Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Scientific Reports, 2021, 11, 13308.	1.6	50
10	Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metabolism, 2021, 33, 1358-1371.e5.	7.2	49
11	Causative Microbes in Host-Microbiome Interactions. Annual Review of Microbiology, 2021, 75, 223-242.	2.9	9
12	Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nature Microbiology, 2021, 6, 1309-1318.	5.9	60
13	Food for Thought: Consumption of a High Fat Diet in Combination with Antibiotics Results in Early Inflammatory Changes in the Gastrointestinal Tract. Gastroenterology, 2021, , .	0.6	0
14	Title is missing!. , 2021, 16, e0244763.		0
15	Title is missing!. , 2021, 16, e0244763.		0
16	Title is missing!. , 2021, 16, e0244763.		0
17	Title is missing!. , 2021, 16, e0244763.		0
18	Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut, 2020, 69, 42-51.	6.1	121

#	Article	IF	CITATIONS
19	Defined microbiota transplant restores Th17/RORÎ ³ t ⁺ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21536-21545.	3.3	58
20	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	6.6	1,387
21	Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host and Microbe, 2020, 27, 467-475.e6.	5.1	124
22	Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. Cell Host and Microbe, 2020, 27, 823-829.e3.	5.1	110
23	Gut microbiota density influences host physiology and is shaped by host and microbial factors. ELife, 2019, 8, .	2.8	118
24	Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23. Nature Communications, 2019, 10, 4517.	5.8	8
25	Challenges in IBD Research: Preclinical Human IBD Mechanisms. Inflammatory Bowel Diseases, 2019, 25, S5-S12.	0.9	44
26	Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nature Communications, 2019, 10, 2012.	5.8	168
27	The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Scientific Reports, 2019, 9, 3546.	1.6	61
28	Microbial Engraftment and Efficacy of Fecal Microbiota Transplant for Clostridium Difficile in Patients With and Without Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2019, 25, 969-979.	0.9	38
29	Specific Bacteria and Metabolites Associated With Response to Fecal Microbiota Transplantation in Patients With Ulcerative Colitis. Gastroenterology, 2019, 156, 1440-1454.e2.	0.6	290
30	Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. Journal of Nutritional Biochemistry, 2019, 64, 170-181.	1.9	52
31	Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity, 2019, 50, 212-224.e4.	6.6	345
32	The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. Journal of Alzheimer's Disease, 2018, 63, 409-421.	1.2	63
33	Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology, 2018, 154, 1037-1046.e2.	0.6	273
34	A Comprehensive Database and Analysis Framework To Incorporate Multiscale Data Types and Enable Integrated Analysis of Bioactive Polyphenols. Molecular Pharmaceutics, 2018, 15, 840-850.	2.3	4
35	Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nature Biotechnology, 2018, 36, 61-69.	9.4	116
36	Microbial-Host Interactions in Inflammatory Bowel Disease, Functional Bowel Disease, Obesity and Obesity-Related Metabolic Disease. Gastroenterology, 2018, 155, 1283-1286.	0.6	3

#	Article	IF	CITATIONS
37	Development and validation of an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry method for analyzing microbial-derived grape polyphenol metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1099, 34-45.	1.2	17
38	Diet Modifies Colonic Microbiota and CD4+ T-Cell Repertoire to Induce Flares of Colitis in Mice With Myeloid-Cell Expression of Interleukin 23. Gastroenterology, 2018, 155, 1177-1191.e16.	0.6	32
39	Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 374-383.	1.4	14
40	A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics, 2017, 49, 1437-1449.	9.4	199
41	Host-Protozoan Interactions Protect from Mucosal Infections through Activation of the Inflammasome. Cell, 2016, 167, 444-456.e14.	13.5	251
42	O2-02-04: Protective Roles of Intestinal Microbiota in Alzheimer's Disease Through Mechanisms Involving Short Chain Fatty Acids and Phenolic Acids. , 2016, 12, P224-P225.		1
43	Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. Journal of Experimental Medicine, 2016, 213, 53-73.	4.2	94
44	P4-155: Intestinal microbiota-derived phenol acids are capable of accumulating in the brain and interfere with β-amyloid oligomerization. , 2015, 11, P838-P838.		0
45	Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 633-640.	3.3	63
46	Role of intestinal microbiota in the generation of polyphenolâ€derived phenolic acid mediated attenuation of Alzheimer's disease l²â€amyloid oligomerization. Molecular Nutrition and Food Research, 2015, 59, 1025-1040.	1.5	187
47	Neutrophil ageing is regulated by the microbiome. Nature, 2015, 525, 528-532.	13.7	627
48	Metabolic labeling puts the microbiome under the microscope. Nature Medicine, 2015, 21, 977-978.	15.2	3
49	The persistent life of IgA. Science Translational Medicine, 2015, 7, .	5.8	0
50	A key to gut health in a few microns of mucus. Science Translational Medicine, 2015, 7, .	5.8	0
51	Targeting Neutrophil Aging and the Microbiota for the Treatment of Sickle Cell Disease. Blood, 2015, 126, 279-279.	0.6	0
52	Identifying Gut Microbe–Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice. Science Translational Medicine, 2014, 6, 220ra11.	5.8	325
53	Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immunity, 2014, 40, 815-823.	6.6	104
54	The Long-Term Stability of the Human Gut Microbiota. Science, 2013, 341, 1237439.	6.0	1,696

#	Article	IF	CITATIONS
55	Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 2013, 341, 1241214.	6.0	3,006
56	Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6252-6257.	3.3	656
57	Predicting a Human Gut Microbiota's Response to Diet in Gnotobiotic Mice. Science, 2011, 333, 101-104.	6.0	480
58	Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME Journal, 2010, 4, 1094-1098.	4.4	116