
Frederico S Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684349/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil, 2016, 403, 129-152.	1.8	467
2	Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 2009, 160, 537-549.	0.9	321
3	Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecology and Management, 2009, 258, 1014-1024.	1.4	260
4	Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic and Applied Ecology, 2004, 5, 241-251.	1.2	101
5	Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography, 2006, 29, 442-450.	2.1	97
6	Dung Beetles along a Tropical Altitudinal Gradient: Environmental Filtering on Taxonomic and Functional Diversity. PLoS ONE, 2016, 11, e0157442.	1.1	97
7	Sexual Differences in Reproductive Phenology and their Consequences for the Demography of Baccharis dracunculifolia (Asteraceae), a Dioecious Tropical Shrub. Annals of Botany, 2003, 91, 13-19.	1.4	90
8	Exploring the Diversity and Distribution of Neotropical Avian Malaria Parasites – A Molecular Survey from Southeast Brazil. PLoS ONE, 2013, 8, e57770.	1.1	89
9	Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 2007, 153, 353-364.	0.9	83
10	Insect Herbivores and Leaf Damage along Successional and Vertical Gradients in a Tropical Dry Forest. Biotropica, 2014, 46, 14-24.	0.8	62
11	Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest–Savanna Transition in Brazil. Biotropica, 2010, 42, 112-118.	0.8	56
12	Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecological Entomology, 2005, 30, 28-35.	1.1	54
13	Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE, 2017, 12, e0182054.	1.1	52
14	Successional and Seasonal Changes in a Community of Dung Beetles (Coleoptera: Scarabaeinae) in a Brazilian Tropical Dry Forest. Natureza A Conservacao, 2010, 08, 160-164.	2.5	51
15	Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 64-73.	1.1	42
16	Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod-Plant Interactions, 2011, 5, 9-18.	0.5	39
17	A Humboldtian Approach to Mountain Conservation and Freshwater Ecosystem Services. Frontiers in Environmental Science, 2019, 7, .	1.5	39
18	Patch and landscape effects on forest-dependent dung beetles are masked by matrix-tolerant dung beetles in a mountainton rainforest archinelago. Science of the Total Environment, 2019, 651, 1321-1331	3.9	37

FREDERICO S NEVES

#	Article	IF	CITATIONS
19	Few Ant Species Play a Central Role Linking Different Plant Resources in a Network in Rupestrian Grasslands. PLoS ONE, 2016, 11, e0167161.	1.1	35
20	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.0	34
21	Vegetation structure determines insect herbivore diversity in seasonally dry tropical forests. Journal of Insect Conservation, 2016, 20, 979-988.	0.8	33
22	Ants of Three Adjacent Habitats of a Transition Region Between the Cerrado and Caatinga Biomes: The Effects of Heterogeneity and Variation in Canopy Cover. Neotropical Entomology, 2013, 42, 258-268.	0.5	32
23	Environmental drivers of taxonomic and functional diversity of ant communities in a tropical mountain. Insect Conservation and Diversity, 2020, 13, 393-403.	1.4	32
24	Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient. , 2016, , 345-377.		30
25	Plant Phenology and Absence of Sex-Biased Gall Attack on Three Species of Baccharis. PLoS ONE, 2012, 7, e46896.	1.1	28
26	Nectar quality affects ant aggressiveness and biotic defense provided to plants. Biotropica, 2019, 51, 196-204.	0.8	27
27	Epiphytic bromeliads as key components for maintenance of ant diversity and ant–bromeliad interactions in agroforestry system canopies. Forest Ecology and Management, 2016, 372, 128-136.	1.4	26
28	Contrasting effects of sampling scale on insect herbivores distribution in response to canopy structure. Revista De Biologia Tropical, 2013, 61, 125-37.	0.1	26
29	Resilience to fire and climate seasonality drive the temporal dynamics of ant-plant interactions in a fire-prone ecosystem. Ecological Indicators, 2018, 93, 247-255.	2.6	25
30	Forest archipelagos: A natural model of metacommunity under the threat of fire. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 238, 244-249.	0.6	24
31	Contrasting effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems. Revista De Biologia Tropical, 2016, 64, 763.	0.1	24
32	Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest. Journal of Insect Science, 2016, 16, 48.	0.6	23
33	Linking Biodiversity, the Environment and Ecosystem Functioning: Ecological Functions of Dung Beetles Along a Tropical Elevational Gradient. Ecosystems, 2018, 21, 1244-1254.	1.6	22
34	Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment. Acta Oecologica, 2018, 87, 13-19.	0.5	22
35	Ant Assemblage Structure in a Secondary Tropical Dry Forest: The Role of Ecological Succession and Seasonality. Sociobiology, 2017, 64, 261.	0.2	22
36	Disturbanceâ€modulated symbioses in termitophily. Ecology and Evolution, 2017, 7, 10829-10838.	0.8	20

FREDERICO S NEVES

#	Article	IF	CITATIONS
37	Speciesâ€level drivers of mammalian ectoparasite faunas. Journal of Animal Ecology, 2020, 89, 1754-1765.	1.3	20
38	Predatory beetles in cacao agroforestry systems in Brazilian Atlantic forest: a test of the natural enemy hypothesis. Agroforestry Systems, 2017, 91, 201-209.	0.9	19
39	Ant diversity in Brazilian tropical dry forests across multiple vegetation domains. Environmental Research Letters, 2017, 12, 035002.	2.2	19
40	Disentangling elevational and vegetational effects on ant diversity patterns. Acta Oecologica, 2020, 102, 103489.	0.5	18
41	Forest cover drives insect guild diversity at different landscape scales in tropical dry forests. Forest Ecology and Management, 2019, 443, 36-42.	1.4	17
42	Spatiotemporal dynamics of the ant community in a dry forest differ by vertical strata but not by successional stage. Biotropica, 2021, 53, 372-383.	0.8	17
43	Ant Fauna in Megadiverse Mountains: a Checklist for the Rocky Grasslands. Sociobiology, 2015, 62, .	0.2	17
44	Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthropod-Plant Interactions, 2011, 5, 351-357.	0.5	16
45	How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?. Journal of Insect Science, 2016, 16, 81.	0.6	16
46	Habitat generalists drive nestedness in a tropical mountaintop insect metacommunity. Biological Journal of the Linnean Society, 2021, 133, 577-586.	0.7	16
47	High butterfly beta diversity between Brazilian cerrado and cerrado–caatinga transition zones. Journal of Insect Conservation, 2017, 21, 849-860.	0.8	15
48	Ant species richness and interactions in canopies of two distinct successional stages in a tropical dry forest. Die Naturwissenschaften, 2019, 106, 20.	0.6	14
49	Fire? They don't give a dung! The resilience of dung beetles to fire in a tropical savanna. Ecological Entomology, 2019, 44, 315-323.	1.1	14
50	Patterns of diversity in a metacommunity of bees and wasps of relictual mountainous forest fragments. Journal of Insect Conservation, 2020, 24, 17-34.	0.8	14
51	Climate and plant structure determine the spatiotemporal butterfly distribution on a tropical mountain. Biotropica, 2021, 53, 191-200.	0.8	14
52	Differential effects of land use on ant and herbivore insect communities associated with Caryocar brasiliense (Caryocaraceae). Revista De Biologia Tropical, 2012, 60, 1065-73.	0.1	14
53	Fluctuating asymmetry of and herbivory on Poincianella pyramidalis (Tul.) L.P. Queiroz (Fabaceae) in pasture and secondary tropical dry forest. Acta Botanica Brasilica, 2013, 27, 21-25.	0.8	13
54	Handling by avian frugivores affects diaspore secondary removal. PLoS ONE, 2018, 13, e0202435.	1.1	13

FREDERICO S NEVES

#	Article	IF	CITATIONS
55	Ecological interactions among insect herbivores, ants and the host plant <i>Baccharis dracunculifolia</i> in a Brazilian mountain ecosystem. Austral Ecology, 2020, 45, 158-167.	0.7	13
56	High Temporal Beta Diversity in an Ant Metacommunity, With Increasing Temporal Functional Replacement Along the Elevational Gradient. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	12
57	Fluctuating asymmetry and herbivory in two ontogenetical stages of <i>Chamaecrista semaphora</i> in restored and natural environments. Journal of Plant Interactions, 2013, 8, 179-186.	1.0	11
58	Change in herbivore insect communities from adjacent habitats in a transitional region. Arthropod-Plant Interactions, 2015, 9, 311-320.	0.5	11
59	Positive effects of the catastrophic Hurricane Patricia on insect communities. Scientific Reports, 2018, 8, 15042.	1.6	11
60	Ant removal distance, but not seed manipulation and deposition site increases the establishment of a myrmecochorous plant. Oecologia, 2020, 192, 133-142.	0.9	11
61	Disentangling the effects of latitudinal and elevational gradients on bee, wasp, and ant diversity in an ancient neotropical mountain range. Journal of Biogeography, 2021, 48, 1564-1578.	1.4	11
62	Brazil's protected areas under threat. Science, 2018, 361, 459-459.	6.0	11
63	Is there a bottom-up cascade on the assemblages of trees, arboreal insects and spiders in a semiarid Caatinga?. Arthropod-Plant Interactions, 2014, 8, 581-591.	0.5	10
64	Interactions between wood-inhabiting fungi and termites: a meta-analytical review. Arthropod-Plant Interactions, 2018, 12, 229-235.	0.5	10
65	Global trends in the trophic specialisation of flowerâ€visitor networks are explained by current and historical climate. Ecology Letters, 2022, 25, 113-124.	3.0	10
66	Does leaf ontogeny lead to changes in defensive strategies against insect herbivores?. Arthropod-Plant Interactions, 2013, 7, 99-107.	0.5	9
67	How much leaf area do insects eat? A data set of insect herbivory sampled globally with a standardized protocol. Ecology, 2021, 102, e03301.	1.5	9
68	ATLANTIC ANTS: a data set of ants in Atlantic Forests of South America. Ecology, 2022, 103, e03580.	1.5	9
69	Fluctuating asymmetry, leaf thickness and herbivory in Tibouchina granulosa: an altitudinal gradient analysis. Arthropod-Plant Interactions, 2018, 12, 277-282.	0.5	8
70	Composition and Richness of Arboreal ants in Fragments of Brazilian Caatinga: Effects of Secondary Succession. Sociobiology, 2016, 63, 762.	0.2	8
71	CHANGES IN THE INSECT HERBIVORE FAUNA AFTER THE FIRST RAINS IN A TROPICAL DRY FOREST. Oecologia Australis, 2019, 23, 381-387.	0.1	8
72	Sampling parasitoid wasps (Insecta, Hymenoptera) in cacao agroforestry systems. Studies on Neotropical Fauna and Environment, 2008, 43, 217-226.	0.5	7

1

#	Article	IF	CITATIONS
73	Vegetation composition and structure determine wild bee communities in a tropical dry forest. Journal of Insect Conservation, 2020, 24, 487-498.	0.8	7
74	Ants in Burned and Unburned Areas in Campos Rupestres Ecosystem. Sociobiology, 2016, 63, 628.	0.2	7
75	Insect galls in xeric and mesic habitats in a Cerrado-Caatinga transition in northern Minas Gerais, Brazil. Neotropical Biology and Conservation, 2012, 7, .	0.4	7
76	Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae:) Tj ETQq0 0 0	rgBT /Ove 0.4	rlock 10 Tf 5
77	Distance–decay patterns differ between canopy and ground ant assemblages in a tropical rainforest. Journal of Tropical Ecology, 2020, 36, 234-242.	0.5	5
78	Ant Fauna on Cecropia pachystachya Trécul (Urticaceae) Trees in an Atlantic Forest Area, Southeastern Brazil. Sociobiology, 2013, 60, .	0.2	5
79	Spatiotemporal Distribution of Herbivorous Insects Along Always-Green Mountaintop Forest Islands. Frontiers in Forests and Global Change, 2021, 4, .	1.0	5
80	Elevational environmental stress modulating species cohabitation in nests of a social insect. Ecological Entomology, 2021, 46, 48-55.	1.1	4
81	Consequences of tropical dry forest conversion on diaspore fate of Enterolobium contortisiliquum (Fabaceae). Plant Ecology, 2021, 222, 525-535.	0.7	4
82	Spatiotemporal Patterns of Ant Metacommunity in a Montane Forest Archipelago. Neotropical Entomology, 2021, 50, 886-898.	0.5	4
83	Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges. PLoS ONE, 2016, 11, e0157448.	1.1	4
84	Suspended leaf litter in an understorey treelet as habitat extension for ground-dwelling ants in the Atlantic Forest, south-eastern Brazil. Journal of Tropical Ecology, 2019, 35, 247-250.	0.5	3
85	Dung beetle βâ€diversity across Brazilian tropical dry forests does not support the Pleistocene Arc hypothesis. Austral Ecology, 2022, 47, 54-67.	0.7	3
86	Vertical stratification and effect of petiole and dry leaf size on arthropod feeding guilds in Cecropia pachystachya(Urticaceae). Brazilian Journal of Biology, 2015, 75, 517-523.	0.4	2
87	Butterflies collected using malaise traps as useful bycatches for ecology and conservation. Journal of Threatened Taxa, 2019, 11, 14235-14237.	0.1	2
88	A neotropical mistletoe influences herbivory of its host plant by driving changes in the associated insect community. Die Naturwissenschaften, 2022, 109, 27.	0.6	2
89	Antagonistic Interactions in the Rupestrian Grasslands: New Insights and Perspectives. , 2016, , 315-343.		1

90 Galls from Brazilian Tropical Dry Forests: Status of Knowledge and Perspectives. , 2014, , 405-427.

#	Article	IF	CITATIONS
91	Fatores que determinam a ocorrência de formigas, em particular poneromorfas, no dossel de florestas tropicais. , 2015, , 295-312.		1
92	Direct and indirect effects of ant–trophobiont interactions on the reproduction of a hummingbird-pollinated mistletoe. Plant Ecology, 2022, 223, 285-296.	0.7	1
93	Disentangling the factors that shape bromeliad and ant communities in the canopies of cocoa agroforestry and preserved Atlantic Forest. Biotropica, 2021, 53, 1698-1709.	0.8	ο