
Sebastian Hoyos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684346/publications.pdf Version: 2024-02-01

1Recurrent Neural Network Equalization for Wireline Communication Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2116-2120.3.012Special Issue on the 2022 IEEE International Symposium on Circuits and Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2393-2393.3.003Multi-Channel Receiver Nonlinearity Cancellation Using Channel Speculation Passing Algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, , 1-1.3.034Kalman-Based Real-Time Functional Decomposition for the Spectral Calibration in Swept Source Optical Coherence Tomography. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 257-273.4.025A 32 Gb/s ADC-Based PAM-4 Receiver with 2-bit/Stage SAR ADC and Partially-Unrolled DFE., 2019, , .36The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter., 2018, , .27Statistical Modeling of Non-Linearity in Decision Feedback Equalizer-Based Mixed-Signal Receivers., 2018, , .18Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, 0, 35-47.0.4249A25 CS/s 6b T1Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 2017, 52, 2168-2179.5.413	ONS
2 Circuits and Systems II: Express Briefs, 2022, 69, 2393-2393. 3.0 0 3 Multi-Channel Receiver Nonlinearity Cancellation Using Channel Speculation Passing Algorithm. IEEE 3.0 3 3 Multi-Channel Receiver Nonlinearity Cancellation Using Channel Speculation Passing Algorithm. IEEE 3.0 3 4 Multi-Channel Receiver Nonlinearity Cancellation Using Channel Speculation in Swept Source Optical Coherence Tomography. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 257-273. 4.0 2 5 A 32 Cb/s ADC-Based PAM-4 Receiver with 2-bit/Stage SAR ADC and Partially-Unrolled DFE., 2019, 3 3 6 The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter., 2018, 2 7 Statistical Modeling of Non-Linearity in Decision Feedback Equalizer-Based Mixed-Signal Receivers., 2018, 1 8 Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, 0.4 24 0 A25 CS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS. 5.4 11	
3 Transactions on Circuits and Systems II: Express Briefs, 2021, , 1-1. 3.0 3 4 Kalman-Based Real-Time Functional Decomposition for the Spectral Calibration in Swept Source 4.0 2 5 A 32 Cb/s ADC-Based PAM-4 Receiver with 2-bit/Stage SAR ADC and Partially-Unrolled DFE. , 2019, , . 3 3 6 The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter. , 2018, , . 2 7 Statistical Modeling of Non-Linearity in Decision Feedback Equalizer-Based Mixed-Signal Receivers. , 2018, , . 1 8 Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, . 0.4 24 0 A25 CS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS. 5.4 12	
4Optical Coherence Tomography. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 257-273.4.025A 32 Gb/s ADC-Based PAM-4 Receiver with 2-bit/Stage SAR ADC and Partially-Unrolled DFE., 2019, , .36The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter., 2018, , .27Statistical Modeling of Non-Linearity in Decision Feedback Equalizer-Based Mixed-Signal Receivers. , 2018, , .18Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, 10, 35-47.0.4240A 25 GS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS.5.413	
 The Spectral Calibration of Swept-Source Optical Coherence Tomography Systems Using Unscented Kalman Filter., 2018, ,. Statistical Modeling of Non-Linearity in Decision Feedback Equalizer-Based Mixed-Signal Receivers., 2018, ,. Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, 0.4 24 A 25 CS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS. 54 12 	_
 Kalman Filter., 2018, ,	
 Analog-to-Digital Converter-Based Serial Links: An Overview. IEEE Solid-State Circuits Magazine, 2018, 0.4 24 A 25 GS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS. 5.4 18 	
A 25 GS/s 6b TI Two-Stage Multi-Bit Search ADC With Soft-Decision Selection Algorithm in 65 nm CMOS.	
10Compressed Level Crossing Sampling for Ultra-Low Power IoT Devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2495-2507.5.49	
11 Towards an on-chip signal processing solution for the online calibration of SS-OCT systems. , 2017, , . 5	
A 10 Gb/s Hybrid ADC-Based Receiver With Embedded Analog and Per-Symbol Dynamically Enabled Digital Equalization. IEEE Journal of Solid-State Circuits, 2016, 51, 671-685. 5.4 18	
A Process-Variation Resilient Current Mode Logic With Simultaneous Regulations for Time Constant, 13 Voltage Swing, Level Shifting, and DC Gain Using Time-Reference-Based Adaptive Biasing Chain. IEEE 3.1 1 Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 198-202.	
14Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics.1.2114Journal of Research of the National Institute of Standards and Technology, 2014, 119, 529.1.21	
15 Statistical modeling of metastability in ADC-based serial I/O receivers. , 2014, , . 4	
A single parity check forward error correction method for high speed I/O., 2014, , . 2014, 2	
A 6 bit 10 GS/s TI-SAR ADC With Low-Overhead Embedded FFE/DFE Equalization for Wireline Receiver 5.4 20 Applications. IEEE Journal of Solid-State Circuits, 2014, 49, 2560-2574.	

Asynchronous Binary Compressive Sensing for Wireless Body Sensor Networks. , 2013, , .

1

SEBASTIAN HOYOS

#	Article	IF	CITATIONS
19	A 6-b 1.6-GS/s ADC With Redundant Cycle One-Tap Embedded DFE in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 2013, 48, 1885-1897.	5.4	14
20	LEAST MEAN SQUARED BACKGROUND CALIBRATION FOR OFDM MULTICHANNEL RECEIVERS. Journal of Circuits, Systems and Computers, 2012, 21, 1250014.	1.5	1
21	Digital-Assisted Asynchronous Compressive Sensing Front-End. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 482-492.	3.6	12
22	Sensitivity Analysis of Continuous-Time \$Delta Sigma\$ ADCs to Out-of-Band Blockers in Future SAW-Less Multi-Standard Wireless Receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 1894-1905.	5.4	12
23	The impact of ADC nonlinearity in a mixed-signal compressive sensing system for frequency-domain sparse signals. Physical Communication, 2012, 5, 196-207.	2.1	11
24	Clock-Jitter-Tolerant Wideband Receivers: An Optimized Multichannel Filter-Bank Approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 253-263.	5.4	16
25	A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 3154-3161.	4.6	85
26	Sensitivity analysis of pulse-width jitter induced noise in continuous-time delta-sigma modulators to out-of-band blockers in wireless receivers. , 2011, , .		3
27	Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2340-2351.	4.6	118
28	A Sixth-Order 200 MHz IF Bandpass Sigma-Delta Modulator With Over 68 dB SNDR in 10 MHz Bandwidth. IEEE Journal of Solid-State Circuits, 2010, 45, 1122-1136.	5.4	61
29	A Multiphase Multipath Technique With Digital Phase Shifters for Harmonic Distortion Cancellation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 921-925.	3.0	12
30	A 1.8V, sub-mW, over 100% locking range, divide-by-3 and 7 complementary-injection-locked 4 GHz frequency divider. , 2009, , .		11
31	A CMOS differential noise cancelling low noise transconductance amplifier. , 2008, , .		8
32	Applications of Multipath Transform-Domain Charge-Sampling Wide-Band Receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 309-313.	3.0	17
33	Compressed UWB signal detection with narrowband interference mitigation. , 2008, , .		21
34	UWB Mixed-Signal Transform-Domain Direct-Sequence Receiver. IEEE Transactions on Wireless Communications, 2007, 6, 3038-3046.	9.2	19