Roberto Verzicco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3684171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. Journal of Computational Physics, 2000, 161, 35-60.	1.9	1,444
2	A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates. Journal of Computational Physics, 1996, 123, 402-414.	1.9	515
3	Immersed boundary technique for turbulent flow simulations. Applied Mechanics Reviews, 2003, 56, 331-347.	4.5	321
4	Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. Journal of Fluid Mechanics, 2003, 477, .	1.4	244
5	Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2010, 643, 495-507.	1.4	206
6	Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. Journal of Fluid Mechanics, 1993, 256, 615-646.	1.4	153
7	Prandtl number effects in convective turbulence. Journal of Fluid Mechanics, 1999, 383, 55-73.	1.4	150
8	A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Computers and Fluids, 2015, 116, 10-16.	1.3	150
9	Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces. AIAA Journal, 2000, 38, 427-433.	1.5	141
10	Direct simulation of transition in an oscillatory boundary layer. Journal of Fluid Mechanics, 1998, 371, 207-232.	1.4	135
11	Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission. Physical Review Letters, 2021, 126, 034502.	2.9	132
12	Modeling of vortex dynamics in the wake of a marine propeller. Computers and Fluids, 2013, 73, 65-79.	1.3	129
13	Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. Journal of Fluid Mechanics, 2009, 622, 259-290.	1.4	118
14	Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-BA©nard Convection. Physical Review Letters, 2009, 102, 044502.	2.9	114
15	Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. Journal of Fluid Mechanics, 2011, 688, 31-43.	1.4	108
16	Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection. Physical Review Letters, 2018, 120, 144502.	2.9	104
17	Effects of nonperfect thermal sources in turbulent thermal convection. Physics of Fluids, 2004, 16, 1965-1979.	1.6	99
18	Numerical experiments on flapping foils mimicking fish-like locomotion. Physics of Fluids, 2005, 17, 113601.	1.6	98

2

#	Article	IF	CITATIONS
19	Turbulent thermal superstructures in Rayleigh-Bénard convection. Physical Review Fluids, 2018, 3, .	1.0	95
20	Exploring the phase diagram of fully turbulent Taylor–Couette flow. Journal of Fluid Mechanics, 2014, 761, 1-26.	1.4	90
21	Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2012, 109, 114501.	2.9	89
22	Optimal Taylor–Couette flow: direct numerical simulations. Journal of Fluid Mechanics, 2013, 719, 14-46.	1.4	80
23	Roughness-Facilitated Local <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn>Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection. Physical Review Letters. 2017. 119. 154501.</mml:mrow></mml:math>	v> <u>s</u> /mml:r	nath>
24	A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. Journal of Fluid Mechanics, 2008, 595, 203-219.	1.4	74
25	Large-eddy simulations in mixed-flow pumps using an immersed-boundary method. Computers and Fluids, 2011, 47, 33-43.	1.3	73
26	Large Eddy Simulation of a Road Vehicle with Drag-Reduction Devices. AIAA Journal, 2002, 40, 2447-2455.	1.5	72
27	A multiple-resolution strategy for Direct Numerical Simulation of scalar turbulence. Journal of Computational Physics, 2015, 301, 308-321.	1.9	70
28	Transitional regimes of low-Prandtl thermal convection in a cylindrical cell. Physics of Fluids, 1997, 9, 1287-1295.	1.6	69
29	A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage. Journal of Fluid Mechanics, 1994, 279, 351-375.	1.4	68
30	Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number. Physics of Fluids, 2005, 17, 121701.	1.6	68
31	Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. Journal of Fluid Mechanics, 2018, 849, .	1.4	68
32	Confined Rayleigh-Bénard, Rotating Rayleigh-Bénard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation. Physical Review Letters, 2017, 119, 064501.	2.9	67
33	Combined Immersed Boundary/Large-Eddy-Simulations of Incompressible Three Dimensional Complex Flows. Flow, Turbulence and Combustion, 2006, 77, 3-26.	1.4	66
34	Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10 ^{â^'1} and 10 ⁴ and Rayleigh numbers between 10 ⁵ and 10 ⁹ . Journal of Fluid Mechanics, 2010, 662, 409-446.	1.4	66
35	Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. Physical Review E, 2008, 77, 016302.	0.8	64
36	Mixed convection in turbulent channels with unstable stratification. Journal of Fluid Mechanics, 2017, 821, 482-516.	1.4	62

#	Article	IF	CITATIONS
37	Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection. Computers and Fluids, 2018, 166, 1-8.	1.3	62
38	Optimal Taylor–Couette flow: radius ratio dependence. Journal of Fluid Mechanics, 2014, 747, 1-29.	1.4	61
39	AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters. Computer Physics Communications, 2018, 229, 199-210.	3.0	60
40	One-point statistics for turbulent pipe flow up to. Journal of Fluid Mechanics, 2021, 926, .	1.4	60
41	Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow. Physics of Fluids, 2014, 26, .	1.6	58
42	Sidewall finite-conductivity effects in confined turbulent thermal convection. Journal of Fluid Mechanics, 2002, 473, 201-210.	1.4	57
43	Transition to geostrophic convection: the role ofÂtheÂboundary conditions. Journal of Fluid Mechanics, 2016, 799, 413-432.	1.4	56
44	Turbulent thermal convection over grooved plates. Journal of Fluid Mechanics, 2006, 557, 307.	1.4	54
45	Flow in an impeller-stirred tank using an immersed-boundary method. AICHE Journal, 2004, 50, 1109-1118.	1.8	53
46	Heat transport in bubbling turbulent convection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9237-9242.	3.3	53
47	scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence. Journal of Fluid Mechanics, 2019, 869, .	1.4	52
48	Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor. Chemical Engineering Science, 2006, 61, 2843-2851.	1.9	51
49	Multiple States in Turbulent Large-Aspect-Ratio Thermal Convection: What Determines the Number of Convection Rolls?. Physical Review Letters, 2020, 125, 074501.	2.9	51
50	Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces. Physical Review Letters, 2018, 120, 044501.	2.9	48
51	Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening. Soft Matter, 2018, 14, 2006-2014.	1.2	47
52	Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Theoretical and Computational Fluid Dynamics, 2016, 30, 129-138.	0.9	46
53	Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. Journal of Fluid Mechanics, 2018, 834, 271-307.	1.4	46
54	Three-dimensional structure and decay properties of vortices in shallow fluid layers. Physics of Fluids, 2001, 13, 1932-1945.	1.6	45

#	Article	IF	CITATIONS
55	Growth of respiratory droplets in cold and humid air. Physical Review Fluids, 2021, 6, .	1.0	45
56	The near-wall region of highly turbulent Taylor–Couette flow. Journal of Fluid Mechanics, 2016, 788, 95-117.	1.4	44
57	A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. Journal of Computational Physics, 2017, 348, 567-590.	1.9	44
58	Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder. Physics of Fluids, 2015, 27, .	1.6	43
59	Wall roughness induces asymptotic ultimate turbulence. Nature Physics, 2018, 14, 417-423.	6.5	40
60	Fluid–Structure-Electrophysiology interaction (FSEI) in the left-heart: A multi-way coupled computational model. European Journal of Mechanics, B/Fluids, 2020, 79, 212-232.	1.2	40
61	Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection. Physical Review E, 2014, 90, 013017.	0.8	39
62	Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet. International Journal of Multiphase Flow, 2004, 30, 1389-1417.	1.6	38
63	Dynamics of pancake-like vortices in a stratified fluid: experiments, model and numerical simulations. Journal of Fluid Mechanics, 2001, 433, 1-27.	1.4	37
64	Mean flow structure in thermal convection in a cylindrical cell of aspect ratio one half. Journal of Fluid Mechanics, 2006, 548, 1.	1.4	37
65	A numerical model for the analysis of unsteady train braking and releasing manoeuvres. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223, 305-317.	1.3	37
66	From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates. Journal of Fluid Mechanics, 2020, 905, .	1.4	37
67	Heat transfer mechanisms in bubbly Rayleigh-Bénard convection. Physical Review E, 2009, 80, 026304.	0.8	36
68	Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample. Physical Review E, 2012, 85, 027301.	0.8	36
69	Flow organization and heat transfer in turbulent wall sheared thermal convection. Journal of Fluid Mechanics, 2020, 897, A22.	1.4	36
70	On steady columnar vortices under local compression. Journal of Fluid Mechanics, 1995, 299, 367-388.	1.4	35
71	Plume emission statistics in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2015, 772, 5-15.	1.4	35
72	Periodically Modulated Thermal Convection. Physical Review Letters, 2020, 125, 154502.	2.9	35

#	Article	IF	CITATIONS
73	Normal and oblique collisions of a vortex ring with a wall. Meccanica, 1994, 29, 383-391.	1.2	34
74	Transitional regimes and rotation effects in Rayleigh–Bénard convection in a slender cylindrical cell. European Journal of Mechanics, B/Fluids, 2007, 26, 1-14.	1.2	34
75	Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropicÂturbulence. Journal of Fluid Mechanics, 2014, 754, 184-207.	1.4	34
76	Numerical and experimental study of the interaction between a vortex dipole and a circular cylinder. Experiments in Fluids, 1995, 18, 153-163.	1.1	32
77	On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mechanica, 2011, 216, 147-163.	1.1	32
78	On the suitability of second-order accurate discretizations for turbulent flow simulations. European Journal of Mechanics, B/Fluids, 2016, 55, 242-245.	1.2	32
79	From Rayleigh–Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure. Journal of Fluid Mechanics, 2020, 895, .	1.4	32
80	Temporal statistics in high Rayleigh number convective turbulence. European Journal of Mechanics, B/Fluids, 2004, 23, 427-442.	1.2	31
81	Logarithmic Mean Temperature Profiles and Their Connection to Plume Emissions in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2015, 115, 154501.	2.9	31
82	From convection rolls to finger convection in double-diffusive turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 69-73.	3.3	31
83	Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure. Journal of Fluid Mechanics, 2016, 794, 746-774.	1.4	31
84	Experimental investigation of heat transport in homogeneous bubbly flow. Journal of Fluid Mechanics, 2018, 845, 226-244.	1.4	31
85	Convection-dominated dissolution for single and multiple immersed sessile droplets. Journal of Fluid Mechanics, 2020, 892, .	1.4	30
86	Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. PartÂ1. Time-averaged analysis. Journal of Fluid Mechanics, 2012, 700, 246-282.	1.4	29
87	Sidewall effects in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2014, 741, 1-27.	1.4	28
88	Scaling laws and flow structures of double diffusive convection in the finger regime. Journal of Fluid Mechanics, 2016, 802, 667-689.	1.4	28
89	Mixed insulating and conducting thermal boundary conditions in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2018, 835, 491-511.	1.4	28
90	Dynamics of baroclinic vortices in a rotating, stratified fluid: A numerical study. Physics of Fluids, 1997, 9, 419-432.	1.6	27

#	Article	IF	CITATIONS
91	Salinity transfer in bounded double diffusive convection. Journal of Fluid Mechanics, 2015, 768, 476-491.	1.4	27
92	Computational prediction of mechanical hemolysis in aortic valved prostheses. European Journal of Mechanics, B/Fluids, 2012, 35, 47-53.	1.2	26
93	Dynamics of a vortex ring in a rotating fluid. Journal of Fluid Mechanics, 1996, 317, 215-239.	1.4	25
94	Turbulent thermal convection in a closed domain: viscous boundary layer and mean flow effects. European Physical Journal B, 2003, 35, 133-141.	0.6	25
95	Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell. Journal of Fluid Mechanics, 2012, 691, 52-68.	1.4	25
96	A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. Journal of Computational Physics, 2018, 375, 228-239.	1.9	25
97	Multiple states and transport properties of double-diffusive convection turbulence. Proceedings of the United States of America, 2020, 117, 14676-14681.	3.3	25
98	An efficient phase-field method for turbulent multiphase flows. Journal of Computational Physics, 2021, 446, 110659.	1.9	25
99	Numerical simulations of transitional axisymmetric coaxial jets. AIAA Journal, 1996, 34, 736-743.	1.5	23
100	Fluid–structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. Journal of Biomechanics, 2011, 44, 1684-1690.	0.9	23
101	Aspect Ratio Dependence of Heat Transfer in a Cylindrical Rayleigh-Bénard Cell. Physical Review Letters, 2022, 128, 084501.	2.9	23
102	Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2019, 881, 218-243.	1.4	22
103	Flow-induced dissolution of femtoliter surface droplet arrays. Lab on A Chip, 2018, 18, 1066-1074.	3.1	21
104	Growth dynamics of microbubbles on microcavity arrays by solvent exchange: Experiments and numerical simulations. Journal of Colloid and Interface Science, 2018, 532, 103-111.	5.0	21
105	Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection. Physical Review E, 2012, 86, 056315.	0.8	20
106	Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. PartÂ2. Phase-averaged analysis. Journal of Fluid Mechanics, 2015, 766, 272-296.	1.4	19
107	Regime transitions in thermally driven high-Rayleigh number vertical convection. Journal of Fluid Mechanics, 2021, 917, .	1.4	19
108	Instabilities driven by diffusiophoretic flow on catalytic surfaces. Journal of Fluid Mechanics, 2021, 919, .	1.4	19

#	Article	IF	CITATIONS
109	FSEI-GPU: GPU accelerated simulations of the fluid–structure–electrophysiology interaction in the left heart. Computer Physics Communications, 2022, 273, 108248.	3.0	19
110	Convective turbulence in mercury: Scaling laws and spectra. Physics of Fluids, 1998, 10, 516-527.	1.6	18
111	Evolution and instability of monopolar vortices in a stratified fluid. Physics of Fluids, 2003, 15, 1033-1045.	1.6	18
112	Numerical simulations of flow reversal in Rayleigh-Bénard convection. Europhysics Letters, 2008, 81, 64008.	0.7	18
113	Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh-Bénard convection. Physical Review E, 2011, 84, 036312.	0.8	18
114	Turbulence decay towards the linearly stable regime of Taylor–Couette flow. Journal of Fluid Mechanics, 2014, 748, .	1.4	18
115	Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. Journal of Fluid Mechanics, 2016, 798, 411-435.	1.4	18
116	Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow. Journal of Fluid Mechanics, 2016, 809, 480-501.	1.4	17
117	The effect of Prandtl number on turbulent sheared thermal convection. Journal of Fluid Mechanics, 2021, 910, .	1.4	17
118	Wall/Vortex-Ring Interactions. Applied Mechanics Reviews, 1996, 49, 447-461.	4.5	16
119	Vertically Bounded Double Diffusive Convection in the Finger Regime: Comparing No-Slip versus Free-Slip Boundary Conditions. Physical Review Letters, 2016, 117, 184501.	2.9	16
120	Dynamics and evolution of turbulent Taylor rolls. Journal of Fluid Mechanics, 2019, 870, 970-987.	1.4	16
121	Effect of roll number on the statistics of turbulent Taylor-Couette flow. Physical Review Fluids, 2016, 1, .	1.0	16
122	Do increased flow rates in displacement ventilation always lead to better results?. Journal of Fluid Mechanics, 2022, 932, .	1.4	16
123	Dipole formation by two interacting shielded monopoles in a stratified fluid. Physics of Fluids, 2002, 14, 704-720.	1.6	15
124	A Non-Adiabatic Flamelet Progress–Variable Approach for LES of Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2011, 86, 667-688.	1.4	15
125	A numerical study on gas–liquid mass transfer in the rotor–stator spinning disc reactor. Chemical Engineering Science, 2015, 129, 14-24.	1.9	15
126	Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness. Journal of Fluid Mechanics, 2019, 873, 260-286.	1.4	15

#	Article	IF	CITATIONS
127	Two-layer thermally driven turbulence: mechanisms for interface breakup. Journal of Fluid Mechanics, 2021, 913, .	1.4	15
128	Electro-fluid-mechanics of the heart. Journal of Fluid Mechanics, 2022, 941, .	1.4	15
129	Modification of turbulence in Rayleigh–Bénard convection by phase change. New Journal of Physics, 2011, 13, 025002.	1.2	14
130	Breaking of modulated wave groups: kinematics and energy dissipation processes. Journal of Fluid Mechanics, 2018, 855, 267-298.	1.4	14
131	Controlling secondary flow in Taylor–Couette turbulence through spanwise-varying roughness. Journal of Fluid Mechanics, 2020, 883, .	1.4	14
132	What rotation rate maximizes heat transport in rotating Rayleigh-Bénard convection with Prandtl number larger than one?. Physical Review Fluids, 2020, 5, .	1.0	14
133	Left Ventricular Hemodynamics with an Implanted Assist Device: An In Vitro Fluid Dynamics Study. Annals of Biomedical Engineering, 2019, 47, 1799-1814.	1.3	13
134	Direct numerical simulations of spiral Taylor–Couette turbulence. Journal of Fluid Mechanics, 2020, 887, .	1.4	13
135	Heat transport enhancement in confined Rayleigh-Bénard convection feels the shape of the container ^(a) . Europhysics Letters, 2021, 135, 24004.	0.7	13
136	Heat transfer in turbulent Rayleigh–Bénard convection through two immiscible fluid layers. Journal of Fluid Mechanics, 2022, 938, .	1.4	13
137	A fast computational model for the electrophysiology of the whole human heart. Journal of Computational Physics, 2022, 457, 111084.	1.9	13
138	DNS of passive scalars in turbulent pipe flow. Journal of Fluid Mechanics, 2022, 940, .	1.4	13
139	Fluid–particle flow simulation by averaged continuous model. Computers and Fluids, 2005, 34, 1040-1061.	1.3	12
140	Specific roles of fluid properties in non-Boussinesq thermal convection at the Rayleigh number of 2 × 10 ⁸ . Europhysics Letters, 2009, 86, 14006.	0.7	12
141	Turbulent Flow and Dispersion of Inertial Particles in a Confined Jet Issued by a Long Cylindrical Pipe. Flow, Turbulence and Combustion, 2009, 82, 1-23.	1.4	12
142	Turbulent Taylor–Couette flow with stationary inner cylinder. Journal of Fluid Mechanics, 2016, 799, .	1.4	12
143	Zhu <i>et al.</i> Reply:. Physical Review Letters, 2019, 123, 259402.	2.9	12
144	Effects of the wind on the breaking of modulated wave trains. European Journal of Mechanics, B/Fluids, 2019, 73, 6-23.	1.2	12

#	Article	IF	CITATIONS
145	Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence. Journal of Fluid Mechanics, 2017, 812, 279-293.	1.4	12
146	Deformable ellipsoidal bubbles in Taylor-Couette flow with enhanced Euler-Lagrangian tracking. Physical Review Fluids, 2017, 2, .	1.0	12
147	Non-Boussinesq convection at moderate Rayleigh numbers in low temperature gaseous helium. Physica Scripta, 2008, T132, 014053.	1.2	11
148	Moving from momentum transfer to heat transfer – A comparative study of an advanced Graetz-Nusselt problem using immersed boundary methods. Chemical Engineering Science, 2019, 198, 317-333.	1.9	11
149	Flow organisation in laterally unconfined Rayleigh–Bénard turbulence. Journal of Fluid Mechanics, 2021, 906, .	1.4	11
150	Large eddy simulation in complex geometric configurations using boundary body forces. AIAA Journal, 2000, 38, 427-433.	1.5	11
151	Boundary layers in turbulent vertical convection at high Prandtl number. Journal of Fluid Mechanics, 2022, 930, .	1.4	11
152	Statistics of turbulence in the energy-containing range of Taylor–Couette compared to canonical wall-bounded flows. Journal of Fluid Mechanics, 2017, 830, 797-819.	1.4	10
153	Effects of mitral chordae tendineae on the flow in the left heart ventricle. European Physical Journal E, 2018, 41, 27.	0.7	10
154	Convective heat transfer along ratchet surfaces in vertical natural convection. Journal of Fluid Mechanics, 2019, 873, 1055-1071.	1.4	10
155	Enhancing heat transport in multiphase Rayleigh–Bénard turbulence by changing the plate–liquid contact angles. Journal of Fluid Mechanics, 2022, 933, .	1.4	10
156	On the survival of strong vortex filaments in â€~model' turbulence. Journal of Fluid Mechanics, 1999, 394, 261-279.	1.4	9
157	Vortex Structures Generated by a Finite-span Oscillating Foil. , 2005, , .		9
158	Ekman pumping and intermittent particle resuspension in a stirred tank reactor. Chemical Engineering Research and Design, 2009, 87, 557-564.	2.7	9
159	Evaluation of prosthetic-valved devices by means of numerical simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2502-2509.	1.6	9
160	Two-scalar turbulent Rayleigh–Bénard convection: numerical simulations and unifyingÂtheory. Journal of Fluid Mechanics, 2018, 848, 648-659.	1.4	9
161	Modeling mitral valve stenosis: A parametric study on the stenosis severity level. Journal of Biomechanics, 2019, 84, 218-226.	0.9	9
162	Heart rate effects on the ventricular hemodynamics and mitral valve kinematics. Computers and Fluids, 2020, 197, 104359.	1.3	9

#	Article	IF	CITATIONS
163	Towards realistic simulations of human cough: Effect of droplet emission duration and spread angle. International Journal of Multiphase Flow, 2022, 147, 103883.	1.6	9
164	The effect of buoyancy driven convection on the growth and dissolution of bubbles on electrodes. Electrochimica Acta, 2022, 403, 139616.	2.6	9
165	Annular dilatation and loss of sino-tubular junction in aneurysmatic aorta: implications on leaflet quality at the time of surgery. A finite element studyâ€. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 8-12.	0.5	7
166	A finite–difference scheme for three–dimensional incompressible flows in spherical coordinates. Journal of Computational Physics, 2021, 424, 109848.	1.9	7
167	Systolic anterior motion in hypertrophic cardiomyopathy: a fluid–structure interaction computational model. Theoretical and Computational Fluid Dynamics, 2021, 35, 381-396.	0.9	7
168	Life stages of wall-bounded decay of Taylor-Couette turbulence. Physical Review Fluids, 2017, 2, .	1.0	7
169	Layering and vertical transport in sheared double-diffusive convection in the diffusive regime. Journal of Fluid Mechanics, 2022, 933, .	1.4	7
170	Structure function exponents and probability density function of the velocity difference in turbulence. Physics of Fluids, 2002, 14, 906-909.	1.6	6
171	Fluid velocity fluctuations in a collision of a sphere with a wall. Physics of Fluids, 2011, 23, .	1.6	6
172	Calculation of the mean velocity profile for strongly turbulent Taylor–Couette flow at arbitrary radius ratios. Journal of Fluid Mechanics, 2020, 905, .	1.4	6
173	Non-monotonic transport mechanisms in vertical natural convection with dispersed light droplets. Journal of Fluid Mechanics, 2020, 900, .	1.4	6
174	Double maxima of angular momentum transport in small gap Taylor–Couette turbulence. Journal of Fluid Mechanics, 2020, 900, .	1.4	6
175	Diffusionâ€Free Scaling in Rotating Spherical Rayleighâ€Bénard Convection. Geophysical Research Letters, 2021, 48, e2021GL095017.	1.5	6
176	Strong alignment of prolate ellipsoids in Taylor–Couette flow. Journal of Fluid Mechanics, 2022, 935,	1.4	6
177	Multiple heat transport maxima in confined-rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2022, 939, .	1.4	6
178	Reverse transition of a turbulent spiral Poiseuille flow at. Journal of Fluid Mechanics, 2022, 941, .	1.4	6
179	Anomalous scaling exponents and coherent structures in high Re fluid turbulence. Physics of Fluids, 2000, 12, 676-687.	1.6	5
180	Transition to ultimate Rayleigh–Bénard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions. Journal of Fluid Mechanics, 2018, 851, .	1.4	5

#	Article	IF	CITATIONS
181	Biomechanical properties and histomorphometric features of aortic tissue in patients with or without bicuspid aortic valve. Journal of Thoracic Disease, 2020, 12, 2304-2316.	0.6	5
182	Toward DNS of the Ultimate Regime of Rayleigh–Bénard Convection. ERCOFTAC Series, 2020, , 215-224.	0.1	5
183	Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations. Journal of Physics: Conference Series, 2018, 1001, 012017.	0.3	4
184	Café latte: spontaneous layer formation in laterally cooled double diffusive convection. Journal of Fluid Mechanics, 2020, 900, .	1.4	4
185	Sensitivity analysis of an electrophysiology model for the left ventricle. Journal of the Royal Society Interface, 2020, 17, 20200532.	1.5	4
186	Pulsating spiral Poiseuille flow. Journal of Fluid Mechanics, 2020, 890, .	1.4	4
187	On the collision of a rigid sphere with a deformable membrane in a viscous fluid. Journal of Fluid Mechanics, 2021, 914, .	1.4	4
188	Anatomic features in SCAD assessed by CCT: A propensity score matching case control study. Annales De Cardiologie Et D'Angeiologie, 2021, 70, 161-167.	0.3	4
189	Numerical simulations of nonlinear thermally stratified spin-up in a circular cylinder. Physics of Fluids, 2010, 22, .	1.6	3
190	Boundary layer structure in confined turbulent thermal convection. Journal of Fluid Mechanics, 2012, 706, 1-4.	1.4	3
191	Unsteady Conjugate Heat Transfer Analysis of an Immersed Particle Innovative Heat Exchanger. Journal of Thermal Science and Engineering Applications, 2012, 4, .	0.8	3
192	Identifying coherent structures and vortex clusters in Taylor-Couette turbulence. Journal of Physics: Conference Series, 2016, 708, 012006.	0.3	3
193	Rough-wall turbulent Taylor-Couette flow: The effect of the rib height. European Physical Journal E, 2018, 41, 125.	0.7	3
194	Constructive interference in a network of elastically-bounded flapping plates. Journal of Fluids and Structures, 2019, 90, 334-353.	1.5	3
195	Droplet plume emission during plasmonic bubble growth in ternary liquids. Physical Review E, 2021, 104, 025101.	0.8	3
196	Droplets generated from toilets during urination as a possible vehicle of carbapenem-resistant Klebsiella pneumoniae. Antimicrobial Resistance and Infection Control, 2021, 10, 149.	1.5	3
197	How small-scale flow structures affect the heat transport in sheared thermal convection. Journal of Fluid Mechanics, 2022, 944, .	1.4	3
198	Vortex rings interacting with a wall. Flow, Turbulence and Combustion, 1993, 51, 469-473.	0.2	2

#	Article	IF	CITATIONS
199	Identification of zones in a free evolving vortex ring. Flow, Turbulence and Combustion, 1994, 53, 387-399.	0.2	2
200	The study of vortex ring/wall interaction for artificial nose improvement. ESAIM: Proceedings and Surveys, 1999, 7, 258-269.	0.4	2
201	Three-dimensional vortex visualization in stratified spin-up. Journal of Visualization, 2010, 13, 81-84.	1.1	2
202	Formation of columnar baroclinic vortices in thermally stratified nonlinear spin-up. Journal of Fluid Mechanics, 2012, 702, 265-285.	1.4	2
203	Performance Analysis for Steady Flow Generation and Improved Readout Signal in Amperometric Biosensors. IEEE Sensors Journal, 2015, 15, 5208-5216.	2.4	2
204	Dynamic mode decomposition analysis of coherent structures in rotating plane Couette flow. Journal of Physics: Conference Series, 2020, 1522, 012012.	0.3	2
205	A fully Eulerian solver for the simulation of multiphase flows with solid bodies: Application to surface gravity waves. Journal of Computational Physics, 2021, 438, 110355.	1.9	2
206	Off-centre gravity induces large-scale flow patterns in spherical Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2022, 942, .	1.4	2
207	Passive scalar transport in Couette flow. Journal of Fluid Mechanics, 2022, 943, .	1.4	2
208	Numerical Simulations of Blood Flow Inside a Mechanical Heart Valve. AIP Conference Proceedings, 2005, , .	0.3	1
209	Turbulent thermal convection over rough surfaces. AIP Conference Proceedings, 2005, , .	0.3	1
210	Mixing in thermally stratified nonlinear spin-up with uniform boundary fluxes. Physics of Fluids, 2014, 26, 096602.	1.6	1
211	Low Reynolds Number Flow Around Tori of Different Slenderness Γ. Applied Sciences (Switzerland), 2017, 7, 1108.	1.3	1
212	A mathematical model to evaluate hemodynamic effects of the graft anastomosis in coronary surgery. Kardiochirurgia I Torakochirurgia Polska, 2019, 16, 106-108.	0.1	1
213	You Were Not Made to Live Like Brutes, But Rather to Follow Virtue and Knowledge. Annals of Thoracic Surgery, 2022, 113, 1756.	0.7	1
214	An Improved â€ ⁻ Flywheel' Model for Convective Turbulence in Liquid Metals. Fluid Mechanics and Its Applications, 1998, , 399-402.	0.1	1
215	10.1063/1.3505025.1., 2010, , .		1

Poster: Direct numerical simulations of turbulent sheared thermal convection., 0,,.

1

#	Article	IF	CITATIONS
217	Shear/Buoyancy Interaction in Wall Bounded Turbulent Flows. Springer Proceedings in Physics, 2019, , 47-54.	0.1	1
218	Laboratory-numerical studies of stratified spin-up flows. Environmental Fluid Mechanics, 2008, 8, 535-541.	0.7	0
219	Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent Rotating Rayleigh-Bénard convection. Springer Proceedings in Physics, 2009, , 529-532.	0.1	0
220	Unsteady Conjugate Heat Transfer Analysis of an Air Immersed Solid Particle With Application to an Innovative Heat Exchanger. , 2011, , .		0
221	Energy dissipation and transfer processes during the breaking of modulated wave trains. Journal of Physics: Conference Series, 2015, 655, 012037.	0.3	0
222	On the electrophysiology of the atrial fast conduction system: an uncertain quantification study. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 264-278.	1.5	0
223	Large–Eddy–Simulation of Complex Flows Using the Immersed Boundary Method. , 2005, , 17-30.		0
224	Heat transfer mechanisms in bubbly Rayleigh-Bénard convection. Springer Proceedings in Physics, 2009, , 355-357.	0.1	0
225	Numerical Simulations of Thermal Convection at High Prandtl Numbers. ERCOFTAC Series, 2010, , 389-394.	0.1	0
226	Fluid Mechanics of Deformable Aortic Prostheses. , 2010, , .		0
227	Numerical Experiments on Turbulent Thermal Convection. ERCOFTAC Series, 2010, , 329-336.	0.1	0
228	Fluid Mechanics in Aortic Prostheses After a Bentall Procedure. , 2011, , 371-376.		0
229	Numerical Simulation of Turbulent Low-Prandtl Convection in a Cylindrical Cell. Fluid Mechanics and Its Applications, 1996, , 267-270.	0.1	0
230	Numerical Experiments of Turbulent Thermal Convection at High Rayleigh Numbers. , 2007, , 177-180.		0