João Mata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/368348/publications.pdf

Version: 2024-02-01

57 papers	1,298 citations	279701 23 h-index	35 g-index
papero	Citations	II IIICA	g muca
58 all docs	58 docs citations	58 times ranked	1354 citing authors

#	Article	IF	CITATIONS
1	Rift-related magmatism of the Central Atlantic magmatic province in Algarve, Southern Portugal. Lithos, 2008, 101, 102-124.	0.6	84
2	Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian Margin. Cretaceous Research, 2009, 30, 575-586.	0.6	76
3	The 2014–15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos, 2017, 288-289, 91-107.	0.6	68
4	Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U–Th and field constraints. Journal of Volcanology and Geothermal Research, 2010, 196, 219-235.	0.8	67
5	Enriched mantle source for the Central Atlantic magmatic province: New supporting evidence from southwestern Europe. Lithos, 2014, 188, 15-32.	0.6	61
6	Primitive neon isotopes in Terceira Island (Azores archipelago). Earth and Planetary Science Letters, 2005, 233, 429-440.	1.8	57
7	Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores) Tj ETQq1 1 402-418.	. 0.784314 0.6	4 rgBT /Over or 55
8	Calcium isotopic evidence for the mantle sources of carbonatites. Science Advances, 2020, 6, eaba3269.	4.7	48
9	Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: Constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Research, 2018, 62, 287-305.	3.0	45
10	Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product. Journal of African Earth Sciences, 2010, 56, 59-74.	0.9	42
11	Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contributions To Mineralogy and Petrology, 2013, 165, 823-841.	1.2	42
12	Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance. Earth and Planetary Science Letters, 2010, 291, 70-83.	1.8	41
13	The Jurassic–Cretaceous basaltic magmatism of the Oued El-Abid syncline (High Atlas, Morocco): Physical volcanology, geochemistry and geodynamic implications. Journal of African Earth Sciences, 2013, 81, 60-81.	0.9	40
14	Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineralogy and Petrology, 2010, 99, 43-65.	0.4	36
15	Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite–silicate magma link. Chemical Geology, 2012, 334, 44-61.	1.4	34
16	Investigating collapse structures in oceanic islands using magnetotelluric surveys: The case of Fogo Island in Cape Verde. Journal of Volcanology and Geothermal Research, 2018, 357, 152-162.	0.8	34
17	A geological record of multiple Pleistocene tsunami inundations in an oceanic island: The case of Maio, Cape Verde. Sedimentology, 2020, 67, 1529-1552.	1.6	32
18	Elemental and isotopic (Sr, Nd, and Pb) characteristics of Madeira Island basalts: evidence for a composite HIMU - EM I plume fertilizing lithosphere. Canadian Journal of Earth Sciences, 1998, 35, 980-997.	0.6	31

#	Article	IF	CITATIONS
19	40Ar/39Ar ages and petrogenesis of the West Iberian Margin onshore magmatism at the Jurassic–Cretaceous transition: Geodynamic implications and assessment of open-system processes involving saline materials. Lithos, 2015, 236-237, 156-172.	0.6	31
20	Alternating crustal architecture in West Iberia: a review of its significance in the context of NE Atlantic rifting. Journal of the Geological Society, 2017, 174, 522-540.	0.9	28
21	Exhumation of a migmatite complex along a transpressive shear zone: inferences from the Variscan Juzbado–Penalva do Castelo Shear Zone (Central Iberian Zone). Journal of the Geological Society, 2017, 174, 1004-1018.	0.9	26
22	Morphology, internal architecture and emplacement mechanisms of lava flows from the Central Atlantic Magmatic Province (CAMP) of Argana Basin (Morocco). Geological Society Special Publication, 2011, 357, 167-193.	0.8	25
23	Capture of the Canary mantle plume material by the Gibraltar arc mantle wedge during slab rollback. Geophysical Journal International, 2015, 201, 1717-1721.	1.0	24
24	Revised stratigraphic framework for the lower Anti-Atlas Supergroup based on U–Pb geochronology of magmatic and detrital zircons (Zenaga and Bou Azzer-El Graara inliers, Anti-Atlas Belt, Morocco). Journal of African Earth Sciences, 2020, 171, 103946.	0.9	23
25	Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume. Contributions To Mineralogy and Petrology, 2012, 163, 995-1009.	1.2	18
26	Tectonically assisted exhumation and cooling of Variscan granites in an anatectic complex of the Central Iberian Zone, Portugal: constraints from LA-ICP-MS zircon and apatite U–Pb ages. International Journal of Earth Sciences, 2019, 108, 2153-2175.	0.9	18
27	Constraints on the structure of Maio Island (Cape Verde) by a three-dimensional gravity model: imaging partially exhumed magma chambers. Geophysical Journal International, 2012, 190, 931-940.	1.0	16
28	Helium isotope systematics in the vicinity of the Azores triple junction: Constraints on the Azores geodynamics. Chemical Geology, 2014, 372, 62-71.	1.4	14
29	The Role of the Seismically Slow Centralâ€East Atlantic Anomaly in the Genesis of the Canary and Madeira Volcanic Provinces. Geophysical Research Letters, 2021, 48, e2021GL092874.	1.5	14
30	The Alpine Orogeny in the West and Southwest Iberia Margins. Regional Geology Reviews, 2019, , 487-505.	1.2	13
31	High-precision geochronology of Mesozoic magmatism in Macao, Southeast China: Evidence for multistage granite emplacement. Geoscience Frontiers, 2020, 11, 243-263.	4.3	13
32	Madeira Island alkaline lava spinels: petrogenetic implications. Mineralogy and Petrology, 2004, 81, 85-111.	0.4	11
33	Evidence for high temperature in the upper mantle beneath Cape Verde archipelago from Rayleigh-wave phase-velocity measurements. Tectonophysics, 2019, 770, 228225.	0.9	11
34	Restitic or not? Insights from trace element content and crystal — Structure of spinels in African mantle xenoliths. Lithos, 2017, 278-281, 464-476.	0.6	10
35	Evidence for mixed contribution of mantle and lower and upper crust to the genesis of Jurassic I-type granites from Macao, SE China. Bulletin of the Geological Society of America, 2021, 133, 37-56.	1.6	10
36	Petrology of ultramafic xenoliths from Madeira island. Geological Magazine, 1990, 127, 543-566.	0.9	9

#	Article	IF	CITATIONS
37	Environmental implication of subaqueous lava flows from a continental Large Igneous Province: Examples from the Moroccan Central Atlantic Magmatic Province (CAMP). Journal of African Earth Sciences, 2017, 127, 211-221.	0.9	9
38	Interplay of tectonics and magmatism during postâ€ift inversion on the central West Iberian Margin (Estremadura Spur). Basin Research, 2021, 33, 1497-1519.	1.3	8
39	Interaction between felsic and mafic magmas in the Salmas intrusive complex, Northwestern Iran: Constraints from petrography and geochemistry. Journal of Asian Earth Sciences, 2015, 111, 440-458.	1.0	7
40	The role of melting on the geochemical evolution and isotopic variability of an anatectic complex in the Iberian Variscides. Lithos, 2020, 378-379, 105769.	0.6	7
41	The genetic link between the Azores Archipelago and the Southern Azores Seamount Chain (SASC): The elemental, isotopic and chronological evidences. Lithos, 2017, 294-295, 133-146.	0.6	6
42	Martin Vaz island geochronology: Constraint on the Trindade Mantle Plume track from the youngest and easternmost volcanic episodes. Journal of South American Earth Sciences, 2021, 106, 103090.	0.6	6
43	Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science (Wuhan,) Tj ETQq1 1 0.7	7 84 814 rg	B& /Overlock
44	Lower Paleozoic rifting event in Central Iberian Zone (central-north Portugal): Evidence from elemental and isotopic geochemistry of metabasic rocks. Chemie Der Erde, 2021, 81, 125768.	0.8	5
45	Extrusive carbonatite outcrops – A source of chemical elements imbalance in topsoils of oceanic volcanic islands. Catena, 2017, 157, 333-343.	2.2	5
46	Evidences for multiple remagnetization of Proterozoic dykes from Iguerda inlier (Anti-Atlas Belt,) Tj ETQq0 0 0 rgE	T/Overloc	:k ₄ 10 Tf 50 3
47	Noble Gas Constraints on the Origin of the Azores Hotspot. Active Volcanoes of the World, 2018, , 281-299.	1.0	4
48	Rifting of the Southwest and West Iberia Continental Margins. Regional Geology Reviews, 2019, , 251-283.	1.2	4
49	Geochemistry and Geochronology of the Neoproterozoic Backarc Basin Khzama Ophiolite (Anti-Atlas) Tj ETQq $1\ 1$	0.784314 0.8	rgBT /Overlo
50	U–Pb Zircon Geochronological and Petrologic Constraints on the Post-Collisional Variscan Volcanism of the Tiddas-Souk Es-Sebt des AÃ⁻t Ikko Basin (Western Meseta, Morocco). Minerals (Basel,) Tj ETQq0	0008rgBT/	Owerlock 10
51	New evidence of Late Cretaceous magmatism on the offshore central West Iberian Margin (Estremadura Spur) from potential field data. Tectonophysics, 2022, , 229354.	0.9	3
52	2D and 3D resistivity tomography of the SuÃmo garnet-bearing dyke, Lisbon Volcanic Complex, Portugal: a case study. Journal of Geophysics and Engineering, 2013, 10, 035013.	0.7	2
53	Reply to Comment on "The Jurassic–Cretaceous basaltic magmatism of the Oued El-Abid syncline (High) Tj E etÂal. (2013) [J. Afr. Earth Sci. 88 (December) (2013) 101–105]. Journal of African Earth Sciences, 2016, 118, 320-323.	TQq1 1 0. 0.9	.784314 rgB 2
54	Nature, timing and magnitude of buried Late Cretaceous magmatism on the central West Iberian Margin. Basin Research, 2022, 34, 771-796.	1.3	2

#	Article	IF	CITATIONS
55	A comparison between the sub-continental lithospheric mantle of Libya, Morocco and Cameroon: Evidences from structural data and trace element of mantle xenolith Cr-diopsides. Journal of African Earth Sciences, 2019, 158, 103521.	0.9	1
56	Physical volcanology and emplacement mechanism of the Central Atlantic Magmatic Province (CAMP) lava flows from the Central High Atlas, Morocco. Comptes Rendus - Geoscience, 2020, 352, 455-473.	0.4	1
57	Geology of the Macao Special Administrative Region (China). Journal of Maps, 2021, 17, 257-267.	1.0	0