
## Azadeh Nilghaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/368330/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Black Phosphorus and its Biomedical Applications. Theranostics, 2018, 8, 1005-1026.                                                                                                                                     | 10.0 | 253       |
| 2  | Flexible microfluidic cloth-based analytical devices using a low-cost waxpatterning technique. Lab on<br>A Chip, 2012, 12, 209-218.                                                                                     | 6.0  | 186       |
| 3  | Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chemistry, 2018, 246, 437-441.                                                                                                        | 8.2  | 137       |
| 4  | Advances of Paper-Based Microfluidics for Diagnostics—The Original Motivation and Current Status.<br>ACS Sensors, 2016, 1, 1382-1393.                                                                                   | 7.8  | 119       |
| 5  | "Periodic-Table-Style―Paper Device for Monitoring Heavy Metals in Water. Analytical Chemistry, 2015,<br>87, 2555-2559.                                                                                                  | 6.5  | 104       |
| 6  | Development of paper-based microfluidic device for the determination of nitrite in meat. Food Chemistry, 2020, 316, 126396.                                                                                             | 8.2  | 82        |
| 7  | Stretchableâ€Fiberâ€Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced<br>Functional Materials, 2016, 26, 4511-4517.                                                                       | 14.9 | 79        |
| 8  | Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sensors and Actuators B: Chemical, 2014, 191, 586-594.                                                                              | 7.8  | 75        |
| 9  | Modification of thread-based microfluidic device with polysiloxanes for the development of a sensitive and selective immunoassay. Sensors and Actuators B: Chemical, 2018, 260, 1043-1051.                              | 7.8  | 58        |
| 10 | Understanding Thread Properties for Red Blood Cell Antigen Assays: Weak ABO Blood Typing. ACS<br>Applied Materials & Interfaces, 2014, 6, 22209-22215.                                                                  | 8.0  | 55        |
| 11 | Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentration. Analytica Chimica Acta, 2019, 1046, 163-169.                                                  | 5.4  | 52        |
| 12 | Low-cost blood plasma separation method using salt functionalized paper. RSC Advances, 2015, 5, 53172-53179.                                                                                                            | 3.6  | 51        |
| 13 | Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.                                                                                                          | 10.1 | 50        |
| 14 | Multiple semi-quantitative colorimetric assays in compact embeddable microfluidic cloth-based<br>analytical device (μCAD) for effective point-of-care diagnostic. Microfluidics and Nanofluidics, 2015, 19,<br>317-333. | 2.2  | 49        |
| 15 | Coffee stains on paper. Chemical Engineering Science, 2015, 129, 34-41.                                                                                                                                                 | 3.8  | 49        |
| 16 | Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. Journal of<br>Agricultural and Food Chemistry, 2022, 70, 5463-5476.                                                                | 5.2  | 44        |
| 17 | Cellulose nanofibre textured SERS substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 309-314.                                                                                      | 4.7  | 42        |
| 18 | Paper-based microfluidics for food safety and quality analysis. Trends in Food Science and Technology, 2021, 118, 273-284.                                                                                              | 15.1 | 42        |

Azadeh Nilghaz

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Determination of norfloxacin residues in foods by exploiting the coffeeâ€ring effect and paperâ€based<br>microfluidics device coupling with smartphoneâ€based detection. Journal of Food Science, 2020, 85,<br>736-743. | 3.1  | 36        |
| 20 | Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls Campylobacter jejuni in Raw<br>Chicken Meat. Applied and Environmental Microbiology, 2020, 86, .                                                      | 3.1  | 28        |
| 21 | Development of fabric-based microfluidic devices by wax printing. Cellulose, 2019, 26, 3589-3599.                                                                                                                       | 4.9  | 26        |
| 22 | Red blood cell transport mechanisms in polyester thread-based blood typing devices. Analytical and<br>Bioanalytical Chemistry, 2016, 408, 1365-1371.                                                                    | 3.7  | 25        |
| 23 | Noble-Metal Nanoparticle-Based Colorimetric Diagnostic Assays for Point-of-Need Applications. ACS<br>Applied Nano Materials, 2021, 4, 12808-12824.                                                                      | 5.0  | 22        |
| 24 | Unlocking the Potential of Organâ€onâ€Chip Models through Pumpless and Tubeless Microfluidics.<br>Advanced Healthcare Materials, 2020, 9, e1901784.                                                                     | 7.6  | 20        |
| 25 | Paper-based analytical device for high-throughput monitoring tetracycline residue in milk. Food<br>Chemistry, 2021, 354, 129548.                                                                                        | 8.2  | 18        |
| 26 | Multi-sensorized pneumatic artificial muscle yarns. Chemical Engineering Journal, 2022, 446, 137241.                                                                                                                    | 12.7 | 18        |
| 27 | Multilayer cell culture system supported by thread. Sensors and Actuators B: Chemical, 2018, 257, 650-657.                                                                                                              | 7.8  | 17        |
| 28 | Understanding the coffee-ring effect of red blood cells for engineering paper-based blood analysis<br>devices. Chemical Engineering Journal, 2020, 391, 123522.                                                         | 12.7 | 15        |
| 29 | Surface Modification of Cellulose Paper for Quantum Dot-based Sensing Applications. BioResources, 2014, 10, .                                                                                                           | 1.0  | 10        |
| 30 | Bilayer Graphene Nanoribbon Carrier Statistic in Degenerate and Non Degenerate Limit. Journal of<br>Computational and Theoretical Nanoscience, 2011, 8, 2029-2032.                                                      | 0.4  | 7         |
| 31 | Batik-inspired wax patterning for cloth-based microfluidic device. , 2011, , .                                                                                                                                          |      | 4         |
| 32 | Chapter 5. Colorimetric-based Sensing in Food Safety and Quality Analysis. Food Chemistry, Function and Analysis, 2017, , 121-140.                                                                                      | 0.2  | 4         |
| 33 | Simultaneous multiple assays on microfluidic cloth-based analytical devices. , 2011, , .                                                                                                                                |      | 2         |
| 34 | Current–Voltage Characteristics of Bilayer Graphene Nanoribbon Field Effect Transistor. Journal of<br>Computational and Theoretical Nanoscience, 2013, 10, 738-741.                                                     | 0.4  | 2         |
| 35 | Bilayer Graphene Nanoribbon Mobility Model in Ballistic Transport Limit. Journal of Computational<br>and Theoretical Nanoscience, 2013, 10, 1262-1265.                                                                  | 0.4  | 1         |
| 36 | REMOVED: Bioactive Paper Design for Human Blood Analysis: Paper Property Suitable for Large-scale<br>Sensor Production. Biochemical Engineering Journal, 2016, 105, 473.                                                | 3.6  | 0         |