
Laura DÃ-az AnadÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3682760/publications.pdf

Version: 2024-02-01

ΙΔΗΡΑ ΠΑΑΖ ΔΝΑΠΑ3Ν

#	Article	IF	CITATIONS
1	How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers. Research Policy, 2022, 51, 104558.	3.3	12
2	Determinants of Chinese and Western-backed development finance in the global electricity sector. Joule, 2022, 6, 1230-1252.	11.7	3
3	Chinese and multilateral development finance in the power sector. Global Environmental Change, 2022, 75, 102553.	3.6	6
4	Leveraging private investment to expand renewable power generation: Evidence on financial additionality and productivity gains from Uganda. World Development, 2021, 140, 105347.	2.6	21
5	Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
6	Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments. Nature Climate Change, 2021, 11, 257-265.	8.1	82
7	How has external knowledge contributed to lithium-ion batteries for the energy transition?. IScience, 2021, 24, 101995.	1.9	10
8	Effects of technology complexity on the emergence and evolution of wind industry manufacturing locations along global value chains. Nature Energy, 2020, 5, 811-821.	19.8	27
9	The short-term costs of local content requirements in the Indian solar auctions. Nature Energy, 2020, 5, 842-850.	19.8	26
10	Patenting and business outcomes for cleantech startups funded by the Advanced Research Projects Agency-Energy. Nature Energy, 2020, 5, 803-810.	19.8	25
11	Startups supported by ARPA-E were more innovative than others but an investment gap may remain. Nature Energy, 2020, 5, 741-742.	19.8	4
12	Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards. Nature Energy, 2019, 4, 929-938.	19.8	273
13	Governments as partners: The role of alliances in U.S. cleantech startup innovation. Research Policy, 2019, 48, 1458-1475.	3.3	94
14	Future Prospects for Energy Technologies: Insights from Expert Elicitations. Review of Environmental Economics and Policy, 2018, 12, 133-153.	3.1	50
15	Unrelated diversification in latecomer contexts: Emergence of the Chinese solar photovoltaics industry. Environmental Innovation and Societal Transitions, 2018, 28, 14-34.	2.5	49
16	A spatially-resolved inventory analysis of the water consumed by the coal-to-gas transition of Pennsylvania. Journal of Cleaner Production, 2018, 184, 366-374.	4.6	12
17	Towards sustainability in water-energy nexus: Ocean energy for seawater desalination. Renewable and Sustainable Energy Reviews, 2018, 82, 3833-3847.	8.2	114
18	Why is China's wind power generation not living up to its potential?. Environmental Research Letters, 2018, 13, 044001.	2.2	32

Laura DÃaz Anadón

#	Article	IF	CITATIONS
19	Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Policy, 2018, 119, 282-293.	4.2	22
20	Quantifying the Effects of Expert Selection and Elicitation Design on Experts' Confidence in Their Judgments About Future Energy Technologies. Risk Analysis, 2017, 37, 315-330.	1.5	22
21	Integrating uncertainty into public energy research and development decisions. Nature Energy, 2017, 2,	19.8	56
22	Rescue US energy innovation. Nature Energy, 2017, 2, 760-763.	19.8	14
23	Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography. Environmental Research Letters, 2017, 12, 123001.	2.2	70
24	Six principles for energy innovation. Nature, 2017, 552, 25-27.	13.7	19
25	Scientific Wealth in Middle East and North Africa: Productivity, Indigeneity, and Specialty in 1981–2013. PLoS ONE, 2016, 11, e0164500.	1.1	16
26	Making technological innovation work for sustainable development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9682-9690.	3.3	127
27	The pressing energy innovation challenge of the US National Laboratories. Nature Energy, 2016, 1, .	19.8	22
28	Expert views - and disagreements - about the potential of energy technology R&D. Climatic Change, 2016, 136, 677-691.	1.7	14
29	Balancing solar PV deployment and RD&D: A comprehensive framework for managing innovation uncertainty in electricity technology investment planning. Renewable and Sustainable Energy Reviews, 2016, 60, 560-569.	8.2	13
30	Targeted opportunities to address the climate–trade dilemma in China. Nature Climate Change, 2016, 6, 201-206.	8.1	206
31	The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics. Energy Policy, 2015, 80, 233-243.	4.2	27
32	Sensitivity to energy technology costs: A multi-model comparison analysis. Energy Policy, 2015, 80, 244-263.	4.2	75
33	Four system boundaries for carbon accounts. Ecological Modelling, 2015, 318, 118-125.	1.2	62
34	Not in my backyard, but not far away from me: Local acceptance of wind power in China. Energy, 2015, 82, 722-733.	4.5	106
35	Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data. Energy Policy, 2015, 80, 219-232.	4.2	50
36	Food security amidst water scarcity: Insights on sustainable food production from Saudi Arabia. Sustainable Production and Consumption, 2015, 2, 67-78.	5.7	38

#	Article	IF	CITATIONS
37	Public policy and financial resource mobilization for wind energy in developing countries: A comparison of approaches and outcomes in China and India. Global Environmental Change, 2015, 35, 340-359.	3.6	58
38	A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecological Economics, 2014, 100, 159-172.	2.9	353
39	The role of the complementary sector and its relationship with network formation and government policies in emerging sectors: The case of solar photovoltaics between 2001 and 2009. Technological Forecasting and Social Change, 2014, 82, 80-94.	6.2	36
40	Waterâ^'Carbon Trade-off in China's Coal Power Industry. Environmental Science & Technology, 2014, 48, 11082-11089.	4.6	81
41	Semiconductor Research Corporation: A Case Study in Cooperative Innovation Partnerships. Minerva, 2014, 52, 237-261.	1.4	4
42	Bridging decision networks for integrated water and energy planning. Energy Strategy Reviews, 2013, 2, 46-58.	3.3	54
43	The evolution of China's National Energy RD&D Programs: The role of scientists in science and technology decision making. Energy Policy, 2013, 61, 1568-1585.	4.2	16
44	Life Cycle Water Use of Energy Production and Its Environmental Impacts in China. Environmental Science & Technology, 2013, 47, 14459-14467.	4.6	204
45	The future costs of nuclear power using multiple expert elicitations: effects of RD&D and elicitation design. Environmental Research Letters, 2013, 8, 034020.	2.2	26
46	Missions-oriented RD&D institutions in energy between 2000 and 2010: A comparative analysis of China, the United Kingdom, and the United States. Research Policy, 2012, 41, 1742-1756.	3.3	93
47	A Collaboratively-Derived Science-Policy Research Agenda. PLoS ONE, 2012, 7, e31824.	1.1	87
48	Trends in investments in global energy research, development, and demonstration. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 373-396.	3.6	43
49	The water–energy nexus in Middle East and North Africa. Energy Policy, 2011, 39, 4529-4540.	4.2	468